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Abstract—In this paper, we consider joint optimization of user
association and resource allocation in three tier HetNets. We
formulate the objective of minimizing the resources required to
clear a given set of files, as a linear program. We show that the
optimal user association is determined by a rate-biasing rule,
where a bias value is associated with each BS. We show that
each rate-bias value crucially only takes values from a finite set
which we characterize. We present a complete analytical solution
along with new structural results. Using these results, we present
efficient distributed algorithms for optimal control of three tier
HetNets. The method involves a 1D search for a resource variable
at the macro-level, and 2D search at the pico-level for a resource
variable and a bias value. We apply our results to a variety of
hierarchical network examples.

I. INTRODUCTION

Heterogeneous Networks (HetNets) consist of low power
base stations (BSs) such as pico cells and femto cells deployed
to operate in same region as the traditional macro cellular
infrastructure [1]. These small cells increase the capacity
due to better spatial re-use of spectrum. Future 5G networks
are expected to be even more heterogeneous with wireless
access to user equipments (UEs) simultaneously available via
multiple technologies, including new technologies such as
mmWave and aerial BSs. As demand increases and cells get
smaller, there will be an increased number of tiers in future
HetNet architectures.

Stochastic geometry based approaches traditionally em-
ployed for studying HetNets provide analytical results on cov-
erage and SINR distributions, but are not suitable for real-time
control. The optimization based literature has focused on cell
association and resource allocation for two tier HetNets, and
to date, there is no complete analytical solution for HetNets
with more than two tiers. With the increased complexity of
5G networks, there is a need for studying the problem in
general cases with more than two tiers. This paper provides a
complete solution to the joint three tier resource allocation &
cell association problem. Results in this paper allow for a wide
range of new and emerging wireless networks to be analyzed
within a common framework. Examples of these networks
include 1) mmWave small cell networks, 2) networks with
aerial platforms and 3) multi-tier radio access technologies.
In the following paragraphs, we discuss important future
technologies which can be treated under this framework.
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5G mmWave cellular networks are expected to have very
small cell sizes (which leads to increase in tiers in 5G HetNet
architectures) due to high path-loss and blocking experienced
at mmWave frequencies [1], [2]. Connectivity of mmWave
links can be highly intermittent due to blocking by mobile
objects. Cell association schemes are needed to offload (and
provide continual service to) the blocked mmWave UEs [2].
Wireless backhaul solutions are being investigated to enable
dense deployments of mmWave cells [1]. In section V, we
optimize HetNets with mmWave small cells, using our frame-
work. We consider the effect of wireless backhaul and block-
ing, and provide insights into design of handover schemes and
backhaul planning.

(a) Network with Drones (b) HAP Network

Fig. 1: HetNet with UAVs

In addition to terrestrial networks, wireless communication
using aerial platforms is also being considered for future
networks [3]. In low altitude platform applications, unmanned
aerial vehicles (UAVs) are deployed as mobile BSs to provide
wireless access, or as UEs requiring access from the existing
BSs [4]. In high altitude platform (HAP) applications, air-
crafts or airships are deployed at altitudes of 17 to 22 km in
the stratosphere to provide wireless connectivity over a large
area [5]. HAPs have a very large coverage area, typically a
few macro-sites, adding an extra tier at the top of the existing
terrestrial network. These networks can be modelled as three
tier HetNets as shown in Fig. 1.

Our framework has the following features which are com-
mon to all the above mentioned applications. 1) The BSs can
be divided into tiers based on their coverage area. Generally,
the higher tier cells have BSs at higher altitudes which cover
larger areas. Several smaller cells can operate in the coverage
area of a high tier cell. 2) A UE can potentially associate
and get service from multiple BSs in different tiers, and 3)
A higher tier BS may cause debilitating interference to the
smaller cells in its coverage area, and resource partitioning
can be used to address this. From two to three tiers, there
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is an increase in the dimensionality of the joint optimization
problem, e.g., two resource variables per UE to three per UE.
Therefore, complexity of algorithms is a crucial consideration,
which we address in the paper.

Fig. 2: A general three tier HetNet. The blue lines depict the BS to UE links
and the red lines depict the interference

Joint user association and resource allocation problems were
studied for HetNet control in several works in the literature. In
[6]–[10], the approach was utility maximization. In [11]–[13],
stochastic geometry was used to derive results. In [14]–[20],
optimization for flow-based models was considered. [21]–[24]
considered utility maximization including power control.

Although some works modelled k-tier HetNets (for k ≥ 3),
they had drawbacks. In [6], [9], [16], [20] resource partitioning
between tiers to avoid cross-tier interference was not consid-
ered. The solutions in [12], [13], [17] are not adaptive to the
changes in traffic, and hence not suitable for real-time control.
Also in [12], [13], [17], the same bias value was applied to
all the BSs in a tier, which is restrictive. Centralized solutions
were proposed in [10], [21], [22], [24]. Only heuristic solutions
were given in [21], [23], [24].

In this paper, we consider the objective of clearing a given
set of files in the network using minimum possible resources,
and refer to it as the minimum time clearing problem. In our
prior work [18], [19], [25], similar formulations were used to
derive joint optimization results for two tier HetNets. The three
tier problem was considered in an early investigation in [26].
However, the proposed solution involved a high dimensional
search (equal to number of femto BSs) to find the solution,
which makes it prohibitive for real-time implementation.

We consider the problem of jointly optimizing user associ-
ation and resource allocation in a three tier downlink HetNet.
We refer to the tiers as macro, pico and femto tiers. We
formulate the minimum time clearing problem as a linear
program (LP). We show that by fixing the time allocated to
small cells, the LP can be decomposed into several (equal to
the number of pico BSs) smaller independent LPs. It follows
that significant parallelization can be achieved by solving these
LPs simultaneously at the corresponding pico BSs. We then
show that the user association is determined by a set of rate-
bias multipliers, one multiplier per BS. The problem of finding
the multipliers using conventional approaches leads to a high
dimensional search e.g., [6], [26]. In contrast, we present new
structural results which enable us to propose more efficient
algorithms with reduced complexity. The contributions of the
paper are given in the following
• We provide a tractable framework for joint-optimization

of user association and resource allocation in three tier
HetNets. Our framework allows for full partitioning of

resources between tiers, critical when there is strong
cross-tier interference. The framework can be applied in
a real-time manner for optimal control, or can be used as
an offline tool for downlink capacity analysis.

• We present distributed algorithms to find the optimal
solution under the proposed framework. The algorithms
are highly efficient due to the new structural results we
obtain in the paper.

• We show that each rate-bias multiplier (corresponding to
a BS) crucially only takes values from a small discrete set.
For a pico Pi, the size of the set is less than 0.5(|Ui|2 +
|Ui|), where |Ui| is the number of UEs covered by the
pico Pi.

• We further show that the solution of the LP at each pico
BS is determined by just two parameters: the femto time
allocation and the pico rate-bias multiplier.

We now present the outline of the paper. In Section II,
we describe the system model and problem formulation. In
Section III, we present the main results of the paper. In
Section IV, we present the numerical results derived using
simulations. In Section V, we treat the HetNet with mmWave
small cells and backhaul under the framework developed in
the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a 3-tier HetNet as shown in Fig. 2, with
time division for resource partitioning. There are N pico
BSs labelled as {Pi}Ni=1, operating in the coverage area of
the macro BS M . There are Ni femto BSs operating in the
coverage area of a pico Pi, labelled as {F ij}Ni

j=1. We consider
significant cross-tier interference in our model (as it is the case
in HetNets, e.g., [12]). Therefore, two different tier BSs with
overlapping coverage areas are not allowed to transmit at the
same time, i.e., no two BSs in {M,Pi, F

i
j} can transmit at the

same time. For user association, each UE can associate with at
most 3 BSs - the macro M, a pico Pi and a femto F ij , (where
j, i depend on the UE location). Let U ij denote the set of UEs
that can associate with the femto F ij , and Ui :=

⋃Ni

j=1 U
i
j

denote the set of UEs that can associate with the pico Pi
1.

Let U :=
⋃N
i=1 Ui denote the set of all the UEs.

Let Bij denote the set of all the BSs excluding F ij , Pi and
M . The rate (in bits/sec) of the link between the femto F ij
and a UE u ∈ U ij (provided the BSs M and Pi are muted) is
given by

Tu = B log2(1 + pF i
j
gF i

j ,u
/(σ2 + IBi

j ,u
))

where B is the transmission bandwidth, gb,u is channel gain
between the BS b and the UE u. gb,u includes the antenna
gain, path loss and shadowing loss. pb is the transmit power
of BS b and σ2 is the noise floor. The term IBi

j ,u
is the

aggregate interference caused to the transmissions from F ij

1For notational simplicity, we do not explicitly model the UEs that have
no femto connectivity and only have coverage from a pico Pi and macro M .
Such UEs can be treated as being in range of a virtual femto F iNi+1 which
provides zero rate. For these UEs, some of the thresholds calculated in the
paper will be infinite, but this only means that the UEs do not associate with
the virtual femto that provides zero rate.
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to u by the BSs in Bij . We treat IBi
j ,u

as constant interference
which depends on Bij and u, i.e., as another noise source2.
Similar assumptions are commonly adopted in the literature,
e.g., [16], [20].

Similarly, let Ru (and Su) denote the rate (in bits/sec) of
the link between u ∈ U ij and the macro M (and the pico
Pi respectively), provided the other two BSs in {M,Pi, F

i
j}

are muted. The BS and UE are assumed to obtain the rate
information using pilot signal measurements.

A. Minimum time clearing LP

Under the model, a UE u has to download a file of size
Du bits. The file can be downloaded from any BS that is in
range. A UE u ∈ U ij can possibly download a part of the
file from each of BSs M,Pi & F ij . For u ∈ U ij , let xu (yu
& zu) denote the amount of file (in bits) downloaded from
the macro M (pico Pi & femto F ij resp.). For this setup, the
minimum time (in sec) required to clear the traffic of all the
UEs is formulated as LP (1-4).

min
xu,yy,zu,π,εi≥0

π +
∑
u∈U

xu/Ru (1)

s.t.
∑
u∈Ui

yu/Su ≤ π − εi, ∀i ∈ {1, 2, . . . , N} (2)∑
u∈Ui

j

zu/Tu ≤ εi, ∀j ∈ {1, . . . , Ni}, i ∈ {1, . . . , N} (3)

xu + yu + zu = Du, ∀u ∈ U (4)

In (1),
∑
u∈U xu/Ru is the time used by the macro and π is

the total time used by the small cell BSs. Out of time π, π−εi
is used by a pico Pi (see (2)) and the rest, εi is used by each
of the femtos {F ij}Ni

j=1 (see (3)). Note that the BSs M,Pi and
F ij are allocated different times under the LP, thus avoiding
cross-tier interference.

Fixing a value of π, LP (1-4) can be decomposed into N
independent LPs, one for each pico Pi. The LP involving Pi
is formulated as LP (5). Let fi(π) denote the optimal solution
of LP (5) for a given π. The solution of LP (1-4) is given by
minπ∈[0,∞) π +

∑N
i=1 fi(π).

min
xu,yu,zu,εi≥0

∑
u∈Ui

xu/Ru s.t.

α constraint :
∑
u∈Ui

yu/Su ≤ π − εi

βj constraint :
∑
u∈Ui

j

zu/Tu ≤ εi, ∀j ∈ {1, . . . , Ni}

γu constraint : xu + yu + zu = Du, ∀u ∈ Ui (5)

Note that fi(π) can be computed at pico Pi. Hence, the
computation of clearing time π +

∑N
i=1 fi(π) can be paral-

lelized and distributed over the picos. Fig 4(a) (on page 6)
depicts a distributed scheme using message passing for such a
computation. Since the function π+

∑N
i=1 fi(π) is convex, the

2Strictly speaking, interference depends on the set of BSs in Bij transmitting
in a given slot. However, this is upper-bounded by the worst-case interference∑
b∈Bi

j
pbgb,u. In this paper, we take IBi

j ,u
to be the worst-case value to

be definite.

optimal π and clearing time can be found by methods such as
a line search. This is the strategy that we will follow to find
the solution of LP (1-4).

In the rest of the paper, we will focus on finding fi(π) at
a pico Pi for an arbitrary i ∈ {1, . . . N}, i.e., we will focus
on the solution of LP (5). The notation used in the paper is
summarised in the following table.

Notation Description

xu; yu; zu
Amount of file (in bits) allocated to u ∈ U ij

by macro M ; pico Pi; femto F ij resp.

Ru; Su; Tu
Rate of the link (in bits/sec) between u ∈ U ij

and macro M ; pico Pi; femto F ij resp.
π − εi Time allocated for transmissions of pico Pi

εi
Time allocated for simultaneous

transmissions of femtos {F ij }
Ni
j=1

1; α; βj
Rate bias multiplier corresponding

to macro M ; pico Pi; femto F ij resp. α, βj and
ραu are

defined in
Theorem 1

below

Ru; Su
α

; Tu
βj

Biased rate of u ∈ U ij from
macro M ; pico Pi; femto F ij resp.

Du Total file size of u (in bits)
ραu min{Tu/Ru, αTu/Su}

III. MAIN RESULTS

For any u ∈ Ui, let x∗u, y∗u and z∗u denote the value of xu, yu
and zu respectively under an optimal solution of LP (5). Let
x := [xu]u∈Ui , y := [yu]u∈Ui and z := [zu]u∈Ui . We present
the main results as the following Theorems. For proofs, refer
to Appendix A.

Theorem 1 (Rate biasing rule). There exist optimal rate-
bias multipliers3, α∗ > 0 corresponding to Pi and β∗j > 0
corresponding to F ij , j ∈ {1, . . . Ni} which determine the
user-association as follows. For any u ∈ U ij ,
1) x∗u > 0, only if Ru = 1/γ∗u
2) y∗u > 0, only if Su/α∗ = 1/γ∗u
3) z∗u > 0, only if Tu/β∗j = 1/γ∗u.

where 1/γ∗u := max{Ru, Su/α∗, Tu/β∗j } is the maximum
biased rate. Further, define ραu := min{αTu/Su, Tu/Ru}. For
any u ∈ U ij , the statements of the flow chart in Fig 3 hold true.

Theorem 1 states that the optimal user association is de-
termined by a rate-biasing rule. The macro rate is not biased
(or equivalently, the bias is 1). For a UE u ∈ U ij , the pico
and femto biased rates are Su/α∗ and Tu/β∗j respectively. A
UE u associates with the BS (or BSs) providing the highest
biased rate 1/γ∗u = max{Ru, Su/α∗, Tu/β∗j }. e.g., 1) If
Ru > max{Su/α∗, Tu/β∗j }, the UE u associates with macro
M (Macro UE case in Fig. 3), 2) If Ru = Su/α

∗ > Tu/β
∗
j , the

UE u associates with both the macro M and pico Pi (Macro-
Pico split UE case in Fig. 3).

Fig. 3 presents all the possible cases of allocation that can
occur under the rate-biasing rule. Theorem 1 provides a partial
characterization of the solution of LP (5) via Fig. 3. Given the
optimal multipliers, Theorem 1 determines the allocation for
non-split UEs (as given in Fig. 3). But, the split UEs may
receive a part of the file from each associated BS which is not

3The rate bias multipliers α, βj and the variable γu correspond to the dual-
variables of LP (5). For complete details, refer to Appendix B and Appendix E.
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Fig. 3: User Association flow chart. The conditions leading to split UE cases are colored in red

given here. Algorithm 1 (on page 4) provides the full solution.
To develop the algorithm, we first present the following two
theorems concerning the optimal solution and the multipliers.

Theorem 2 (Finite set of rate-bias multipliers). Let ραu :=
min{αTu/Su, Tu/Ru}. The optimal rate bias multipliers α∗

and β∗j take values from finite sets A and Bj respectively, as
follows

(i) α∗ ∈ A, where

A :=

Ni⋃
j=1

{ SaTb
TaRb

:
Tb
Rb
≤ Ta
Ra

,
Ta
Sa
≤ Tb
Sb
}(a,b)∈Ui

j×Ui
j

(ii) β∗j ∈ Bj := {ραu : u ∈ U ij}α∈A, j ∈ {1, . . . Ni}
Note that |A| ≤∑Ni

j=1

|Ui
j |2+|Ui

j |
2 .

Given that the rate bias multipliers lie in a finite set
(characterized in Theorem 2), it is tempting to implement
a discrete search to find the optimal rate bias multipliers.
However as explained in the previous paragraph concerning
Theorem 1, such knowledge does not provide the allocation
for split UEs. The following theorem forms the basis of our
algorithmic solution, which achieves two goals, 1) it provides
the full allocation, including split UEs, and 2) it reduces the
dimensionality of the problem to just 2.

Theorem 3 (Allocation function). There exists an allocation
function Θ : R+×[0, π]→ R3|Ui|+Ni

+ (defined in Algorithm 1),
which provides a mapping from a pair of {α, εi} ∈ R+ ×
[0, π] to a solution [x,y, z] of LP (5) and the femto rate bias
multipliers β = [βj ]

Ni
j=1 > 0 as follows.

[x,y, z,β] = Θ(α, εi)

Moreover, the function satisfies [x∗,y∗, z∗,β∗] = Θ(α∗, ε∗i ),
where α∗ is the optimal pico rate-bias multiplier and ε∗i is the
optimal femto time in LP (5).

Theorem 3 provides the complete solution of LP (5), given
by Θ(α∗, ε∗i ). It also shows that the solution is determined
by just two variables - α∗ and ε∗i . Hence, a search over 2
parameters: discrete search for α∗ over A and a continuous

search for ε∗i over [0, π], can be implemented to solve LP (5)
(in contrast to a high dimensional search for Ni+1 multipliers,
e.g., [6], [26]).

Algorithm 1 Allocation Function Θ(α, εi)

1: Run Algorithm 2 to obtain {Fj(α, εi)}Ni
j=1 and to evaluate

β, z, a, b, δ. // Femto allocation
step // A special case that can occur is when two
split UEs, a femto-pico split UE a and a femto-macro split UE b are in
U ij for some j (See step 5 in Algorithm 2). In this case, za, zb will be
determined by Algorithm 3 in the next step. Here, δ = za/Ta + zb/Tb

is the available femto-time to be shared between a and b.
2: Run Algorithm 3 to obtain P(α, εi, z, a, b, δ), and to

evaluate y, za, zb. // Pico allocation step
3: xu = Du − yu − zu, ∀u ∈ Ui. // Macro allocation step
4: return x,y, z,β

The allocation function Θ(α, εi) of Theorem 3 (given in Al-
gorithm 1) is defined using the the femto allocation functions
Fj(α, εi), j ∈ {1, . . . Ni} given in Algorithm 2 and a pico
allocation function P([Fj(α, εi)]Ni

j=1) given in Algorithm 3.
The femto allocation function Fj(α, εi) determines the

femto multiplier βj and femto allocation [zu]u∈Ui
j

for the
femto F ij (in step 1 of Algorithm 1). The pico allocation
function P([Fj(α, εi)]Ni

j=1) takes the outputs from the femto
functions and determines the pico allocation [yu]u∈Ui

for the
pico Pi (in step 2 of Algorithm 1). The macro allocation
[xu]u∈Ui

can be completed by step 3 in Algorithm 1. The
individual steps in Algorithm 2 and Algorithm 3 are justified
by the Lemmas (contained in the Appendices) mentioned in
the corresponding steps.

Algorithm 2 Femto Allocation Algorithm Fj(α, εi)
1: Initialize flagj = 0 // This flag is used to note the occurrence of

two split users case, and 0 by default.
2: Sort u ∈ U ij in descending order of ραu such that ραu1

≥
. . . ≥ ραuK

. // where K = |U ij |
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3: if
∑K
k=1Duk

/Tuk
≤ εi then // No split user case.

zuk
= Duk

for 1 ≤ k ≤ K (See Lemma 4 in Appendix C)

βj = ραuK
(See Lemma 10 in Appendix E)

4: else if ∃l ≤ K such that ραul
6= ραuk

,∀k 6= l and∑l−1
k=1Duk

/Tuk
≤ εi <

∑l
k=1Duk

/Tuk
then // One

femto split user case

zuk
=


Duk

for 1 ≤ k ≤ l − 1

Tul
(εi −

l−1∑
k′=1

Duk′/Tuk′ ) for k = l

0 for l + 1 ≤ k ≤ K
βj = ραul

(See Lemma 5 in Appendix C)

5: else if ∃l ≤ K − 1 such that ραul
= ραul+1

and∑l−1
k=1Duk

/Tuk
≤ εi <

∑l+1
k=1Duk

/Tuk
then // Two femto

split users case. We now set a flag to denote that this case occurred.
6: flagj = 1, a := ul, b := ul+1 // femto-pico split UE is a,

femto-macro split UE is b

zuk
=

{
Duk

for 1 ≤ k ≤ l − 1

0 for l + 2 ≤ k ≤ K
βj = ραul

= ραul+1
(See Lemma 6 in Appendix C)

7: δ := εi −
∑l−1
k=1Duk

/Tuk
. // δ is the femto time for a and

b. Step 7 of Algorithm 3 determines za & zb.
8: end if
9: return {zu}u∈Ui

j−{a,b}, βj , a, b, δ

Algorithm 3 Pico Allocation Algorithm P(α, εi, z, a, b, δ)

1: W := the set of UEs u ∈ Ui − {a, b} such that D′u :=
Du − zu > 0 // not femto only UEs

2: Sort wk ∈ W in descending order such that Sw1
/Rw1

>
. . . > Sw|W |/Rw|W | .

3: if flagj = 0,∀j ∈ {1, . . . Ni} then // Two split users case did
not occur in {Fj(α, εi)}Ni

j=1

4: Find l ≤ |W | such that
∑l−1
k=1D

′
wk
/Swk

< π − εi ≤∑l
k=1D

′
wk
/Swk

ywk
:=

{
D′wk

for 1 ≤ k ≤ l − 1

0 for l + 1 ≤ k ≤ |W |

ywl
:= Swl

(π − εi −
l−1∑
k′=1

D′wk′
/Swk′ )

(See Lemma 7 in Appendix D)

5: else if flagj = 1, for one j ∈ {1, . . . Ni} then// Two femto
split users case occurred in Fj(α, εi)

6: Find l ≤ |W | such that Swl
/Rwl

> α > Swl+1
/Rwl+1

ywk
=

{
D′wk

for 1 ≤ k ≤ l
0 for l + 1 ≤ k ≤ |W |

ya = Sa(π − εi −
∑l

k=1
D′wk

/Swk
)

7: yb = 0, za = Da − ya, zb = Tb(δ − za/Ta)
(See Lemma 8 in Appendix D)

8: end if
9: return y, za, zb

A. Scalable and Distributed Implementation

(a) Macro level distributed scheme for com-
puting clearing time. Here, fi(π) is com-
puted as (6) using the results of Θ(α, εi) in
Fig. 4(b)

(b) Pico level scheme - Distributed imple-
mentation of Algorithm 1 to get Θ(α, εi)

Fig. 4: Distributed computation schemes. The yellow circles represent the
local allocation functions at the BSs, and the arrows represent the messages.
The numbering on the arrows is the order in which the message exchanges
occur.

Fig. 4(b) shows a distributed implementation of Algorithm 1
to evaluate Θ(α, εi). The scheme can be implemented as
follows. The pico Pi broadcasts a message containing the
values (α, εi) to the femtos {F ij}Ni

j=1. Then, each femto F ij
runs the function Fj locally with the inputs (α, εi). The
femto allocations {Fj(α, εi)}Ni

j=1 are computed in parallel at
the corresponding femtos. Following the computation, each
femto F ij sends the evaluation Fj(α, εi) to the pico Pi, which
then computes P([Fj(α, εi)]Ni

j=1). This completes the pico and
femto allocations z,y. Macro allocation x is determined by
line 3 of Algorithm 1.

This implementation is scalable in the number of femtos,
Ni, due to the local nature of functions Fj . The only increase
is in the number of messages (equal to Ni) sent from the
femtos F ij to the pico Pi. A similar statement about scalability
also holds true for macro-level process shown in Fig. 4(a).
The worst case computational complexity of the function Fj
is O((|U ij |+ 1) log |U ij |), and for function P , it is O((|Ui|+
1) log |Ui|).

The only thing left is the search procedure to find the
optimal values (α∗, ε∗i ). First, we introduce the notation nec-
essary for discussion. Let θ(α, εi) be the value of the objective
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function
∑
u∈Ui

xu/Ru under the solution given by Θ(α, εi).
If the solution is infeasible, we take θ(α, εi) to be ∞. Now,
(α∗, ε∗i ) := arg minα∈A,εi∈[0,π] θ(α, εi), and the optimal value
of LP (5), fi(π) is given by

fi(π) = θ(α∗, ε∗i ) (6)

The search algorithms and their convergence results are pre-
sented in the following section.

IV. NUMERICAL RESULTS

To illustrate the results, we consider a three tier HetNet with
a macro BS, 6 pico BSs and 4 femto BSs per pico site. The
simulation parameters are given in the following tables. The
BS parameters are in the order: macro, pico, femto.

BS parameters Values
Transmit power 46, 30, 22 (in dBm)
Antenna gain 14, 5, 3 (in dBi)

Path-loss exponent n 3.76, 3.76, 3
Coverage radius 500, 150, 50 (in m)

Log-normal shadowing
standard deviation 10, 6, 6 (in dB)

Parameter Value
Transmission bandwidth 10 MHz

File size Du 2.7 Mb
UE noise figure 10 dB

Noise power -106 dBm

Minimum inter-BS distance 300 m (for pico tier)
90 m (for femto tier)

The macro BS is placed at the origin, the other BS locations
are randomly realized in the macro coverage region such that
inter-BS distances are greater than the specified values. We
consider circular cells with the specified radii; a UE receives
signal from a BS if within the coverage radius. UE placement
is done in two stages, 5 UEs are uniformly scattered in each
femto cell in the first stage, and 20 UEs are uniformly scattered
in each pico cell in the second stage. The path-loss (in dB)
formula is 128 + 10n log10(d/km), where d is the BS-UE
distance.

A. Search for α∗, ε∗i
In this section, we focus on the search to find ε∗i and α∗.

We start by fixing π = 0.4 sec in LP (1-4), and solve LP (5)
by finding ε∗i and α∗. Recall from (6) that fi(π) = θ(α∗, ε∗i ).4

For a given εi, define α(εi) := arg minα∈A θ(α, εi) as the
α that minimizes the objective function. We consider a layered
search over α, εi. In section IV-A1, the inner search to find
α(εi) (shown in Fig. 6(a)). In section IV-A2, the outer search
for ε∗i (shown in Fig. 6(b)). Note that α∗ = α(ε∗i ), hence both
α∗ and ε∗i are derived here.

1) Inner search for α(εi): We find the α(εi) for the given
εi using inner search in Fig. 6(a). Recall that flagj = 1 is
used to denote two split users case in Algorithm 2. Define
flag := maxNj=1 flagj . One of the following conditions will
hold when the input α = α(εi)

4There is macro-level search over π to minimize π +
∑N
i=1 fi(π) is

presented in section IV-C. The value π = 0.4 < π∗ is chosen such that the
constraints are tight, i.e., fi(π) > 0, ∀i. The search is more straightforward
when there is slackness.

i) If flag = 0, then α = Swl
/Rwl

, where wl is the split
user in Algorithm 3. (See Lemma 7 in Appendix D)

ii) If flag = 1, then α = SaTb/TaRb, 0 ≤ ya ≤ Da and
0 ≤ zb ≤ Db, where a, b are the two femto split users in
Algorithms 2 & 3. (See Lemma 6 in Appendix C)

When conditions i) and ii) do not hold, either α > α(εi)
(over-biased) or α < α(εi) (under-biased). Fig. 6(a) provides
the criteria to check this relation between α and α(εi),
depending on the value of flag. Using this property, Fig. 6(a)
performs a binary search for α(εi) over A. In each iteration,
|Atmp| ≤ |A′|/2, since α is the median of set A′. Therefore,
the set of possible α’s is halved in size during the update
A′ := Atmp. Hence, the convergence time (in steps) is at
most log2 |A|.

The average convergence times of inner search for the 6
picos are [6.43, 5.12, 6.25, 4.25, 6.12, 6.12] steps respectively,
where |A| for the picos are [82, 82, 80, 79, 76, 76] respectively.
Here, the averages are calculated over the input εi’s given by
the outer search updates in Fig. 5(b).

(a) Outer search updates for i = 1

(b) Convergence of outer search for all the picos

Fig. 5: Outer search algorithm. Here k is the number of iterations, and ε(k)i
is the value of εi in kth iteration.

2) Outer search for ε∗i : Define h(εi) := θ(α(εi), εi). Note
that h(εi) is the value of LP (5) for a fixed given εi. We use
the convexity of h(.) to find ε∗i := arg minεi h(εi), using the
outer search algorithm in Fig. 6(b).

Under the shadow-price interpretation of dual-variables,
s(εi) := ∂h(εi)/∂εi = α′ − ∑Ni

j=1 β
′
j , where α′, {β′j}Ni

j=1
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A′ = AInitialize

Set

Evaluate Θ(α, ǫi)

flag = 0 flag = 1

> 0

< 0 α(ǫi) = α
Convergence

Under-biased Over-biased

Update

Input ǫi

median of A′

ya, zb

ya < 0 or zb < 0

ya > Da or zb > Db

Check
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α− Swl
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A′ := Atmp

α :=

Atmp :=

{α′ ∈ A′ : α′ < α}
Atmp :=

{α′ ∈ A′ : α′ > α}

else†

† The else condition here is satisfied via the left arrow when                      ,

and via the right arrow when 

α = Swl
/Rwl

0 ≤ ya ≤ Da & 0 ≤ zb ≤ Db

(a) Inner search for α(εi).

Initialize

Input π

ǫLi = 0, ǫHi = π

Evaluate

s(ǫLi ), s(ǫ
H
i ) > 0s(ǫLi ), s(ǫ

H
i ) < 0

s(ǫLi ) < 0, s(ǫHi ) > 0
ǫ∗i = 0ǫ∗i = π

Run the inner search to find α(ǫi)

Evaluate 

s(ǫi) = s(ǫLi )

s(ǫi) = s(ǫHi )
Is

or

?

ǫ∗i = ǫiNo 

s(ǫi) < 0 s(ǫi) > 0

Convergence Convergence 

Convergence 

Yes 

s(ǫLi ), h(ǫ
L
i ) s(ǫHi ), h(ǫHi )

Set

s(ǫi), h(ǫi)

ǫ∗i = ǫi
Convergence 

h(ǫi) > 0
h(ǫi) = 0

α(ǫLi ),α(ǫ
H
i )Get from inner search

&

ǫi :=
s(ǫHi )ǫHi − s(ǫLi )ǫ

L
i

ǫHi − ǫLi
− h(ǫHi )− h(ǫLi )

ǫHi − ǫLi

ǫLi := ǫi ǫHi := ǫi

(b) Outer search for ε∗i

Fig. 6: Search algorithms to find α∗, ε∗i

are the dual-variables corresponding to the pico-time and
femto-time constraints in LP (5). The rate bias multipliers
α(εi), {βj}Ni

j=1 are equal to the corresponding dual-variables,
provided the corresponding constraint is not slack. When a
constraint is slack, the corresponding dual-variable is zero.
(Refer to Appendix E for more details). Note that α(εi) and
Θ(α(εi), εi) are evaluated by the inner search algorithm (in
Fig. 6(a)). The gradient s(εi) can now be calculated since
1) α(εi) is known, and 2) the allocation [x,y, z] (which
determines slackness of constraints) and rate-multipliers β are
given by Θ(α(εi), εi).

h(.) is a piecewise linear function (blue curve in Fig. 5(a)).
Fig. 6(b) provides a linear interpolation based search algorithm
to find ε∗i in a finite number of steps. We take a point εLi with
a negative gradient and a point εHi with a positive gradient and
solve for a new εi as the εi-coordinate of the intersection of
tangents (of curve h(.)) at points (εLi , h(εLi )) and (εHi , h(εHi )).
e.g., In Fig 5(a), εLi = 0, εHi = 0.4 during iteration 1, and ε(1)i
is the new εi. Now, either εi = ε∗i or the point (εi, h(εi)) lies
on a new line segment of the curve h(.) (See Fig. 5(a)). Due
to convexity of h(.), εi is closer to the ε∗i than at least one
of εLi , ε

H
i . Finally, either εLi or εHi is updated based on the

slope s(εi). The convergence occurs in finite number of steps
because the curve h(.) is composed of a finite number of line
segments.

The convergence results can be seen in Fig 5. In Fig 5(a),
εLi is updated in iterations 1 and 3 (since the slope s(εi) is
negative), and εHi is updated in iteration 2. Fig. 5(b) shows
the convergence times (in number of iterations or steps) for

all the 6 picos.

B. Alternate approximate methods and convergence times
The search algorithms given in Fig. 6 in section IV-A derive

the exact solution (α∗, ε∗i ) in finite number of steps. The
simulation results indicate convergence with in a small number
of steps. However, in practical implementation, issues like
delay may impose additional constraints on search time. In this
case, the search can be truncated and last calculated feasible
solution can be used, which lies within εHi − εLi distance of
the optimal value ε∗i .

Alternatively, we now present an approximate scheme with
bounded convergence time (in steps). Here, the parameters
α, εi are allowed to take values from a predefined finite set,
e.g., quantized levels for parameters. Let Sα, Sεi denote the
sets of values that α and εi can take respectively. We present
the modified search algorithms as follows.

For the inner search, the algorithm in Fig. 6(a) can be
applied with initialization A′ = Sα, and stopped when
|A′| = 1. The convergence time is log2 |Sα|. For the outer
search, a binary search version of the algorithm in Fig. 6(b)
can be applied, where the new εi ∈ Sεi will be chosen as the
median value between εLi and εHi (instead of the intersection
of the tangents). Convergence occurs in log2 |Sεi | steps (when
εLi = εHi ). The total convergence time is ≤ log2 |Sα| log2 |Sεi |.

C. Performance Results of the Minimum Time Clearing
Scheme

Recall that there is also a process at macro level (shown in
Fig. 4(a)) to solve LP (1-4), i.e., to derive π∗ := minπ π +
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∑N
i=1 fi(π). A similar search method to Fig 6(b) or traditional

methods such as golden section search, line search can be used
to find π∗. Since, our main focus is on LP (5), we have only
presented the convergence results for finding fi(π). Now, we
present the clearing time π +

∑N
i=1 fi(π) as a function of

π (red curve A in Fig. 7(a)), and compare with alternative
schemes.

For comparison, we consider schemes A-D given in the
following table. Scheme A is the minimum time clearing
scheme of the paper, which uses full resource partitioning
(FRP) between the tiers. Scheme D has no resource partition-
ing (No RP) between the tiers, and all the BSs are allowed
to transmit simultaneously. For the other schemes B&C, we
consider Almost Blanking Subframes (ABS) scheme of 3GPP.
Under ABS, resource partitioning at macro tier is performed;
the macro is silent during the small cell (or ABS) time.
The picos and femtos are taken to use the entirety of small
cell time for transmission. Scheme C uses SINR biased user
association, which is equivalent to the Cell Range Expansion
(CRE) scheme of 3GPP. The other schemes A,B&D use rate
biased user association (as explained in the paper).

Note that the rates under No RP and ABS will be lower
(than that of FRP) due to the cross-tier interference resulting
from the simultaneous transmissions of different tiers.

Scheme Resource partitioning UE association rule
A FRP Rate Bias

B; C ABS Rate Bias; SINR Bias resp.
D No RP Rate Bias

We measure performance in terms of the time required to
clear the files of a given set of UEs. Note that smaller clearing
time means higher capacity, since more files are transmitted
per second. The schemes A-C are adaptive with respect to the
small cell time π, and hence the clearing time is minimized
over all possible choices of bias values for each π. Scheme D
is fixed. It is optimized over all possible bias values and has a
fixed small cell time π (given by optimal biasing). Therefore,
the clearing times presented are the best possible for respective
schemes. Note that the clearing time of C provides a lower-
bound to the CRE and ABS schemes of 3GPP. D is a lower-
bound to the rate-biased schemes in [6], [16], [17], [20].

The results are presented in Fig. 7. It is clear that the
minimum clearing scheme A performs better than the other
schemes by definition. However, the difference is significant
in the considered scenario, as can be observed from Fig. 7(a)
and Fig. 7(b). It can also be observed that FRP (scheme
A) provides significant gain over ABS (scheme B) for rate
biased association, and the difference is even more significant
between ABS (scheme B) and No RP (scheme D). This result
highlights the importance of resource partitioning in HetNets.

Fig. 7(b) shows the distribution of macro, pico and femto
times across the considered schemes at their respective optima.
Here, pico time (and femto time) is the time available to the
picos (and the femto resp.). Under ABS (B&C), the small-cell
time π is available to all the picos and the femtos. For schemes
B&C, we illustrate this with two parallel bars (green & blue).
Under FRP, recall that the time available to a F ij is εi, i.e.,
it depends on i. For scheme A, the stacked green and blue

(a) Clearing time comparison

(b) Macro and small cell times

Fig. 7: Comparison of various user association and resource partitioning
schemes.

bars are the average pico time (π−∑
i εi/N ) and femto time

(
∑
i εi/N ) respectively. For D, the macro, pico and femto BSs

are all transmitting at the same time, which is illustrated with
three parallel bars (brown, green & blue). Scheme A has the
smallest macro-cell load, followed by B & C. Lack of resource
partitioning in D has resulted in a high macro-cell load.

V. APPLICATION TO FUTURE NETWORKS

Thus far, the framework developed in the paper has been
used to obtain the minimum time clearing scheme A (FRP,
Rate Bias) in section IV-C. However, the framework is more
general and can be easily adapted to implement other three
tier joint optimization schemes. For example, the framework
can be used to optimize three tier user association under an
ABS setup as follows. Consider the three tier HeNet (described
in section II), but now operating under a macro only ABS
scheme (as in schemes B&C in section IV-C). Note that this
cannot be addressed as a two-tier problem, since the picos and
femtos must be distinguished for cell association. Recall that
under ABS, the picos and femtos transmit during the entirety
of small cell time π. UE SINRs (and rates) from femto F ij
will now include the cross-tier interference from pico Pi and
vice versa. With this setup, the minimum clearing time LP
can be formulated as LP (1-4) with π − εi in (2) and εi in
(3), replaced by π. The solution yields the optimal point of
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scheme B (ABS, Rate Bias), i.e., the minimum of the yellow
curve B in Fig. 7(a).

In this section, we provide a detailed application of the
framework to an interesting future network, which will result
in a different LP formulation (i.e., not LP (1-4)). We consider
a three tier HetNet with mmWave femtos and mmWave
wireless backhaul. We will show that all the main results
can be extended to the mmWave HetNet, and describe how
the algorithms can be implemented with slight modifications.
For the mmWave cells, we consider single stream MIMO
beamforming. The results can be extended to networks with
advanced techniques such as Space Division Multiplexing
(SDMA), but are beyond the scope of this paper.

(a) mmWave femto cell (b) mmWave femto cell with mmWave
backhaul

Fig. 8: mmWave Three tier HetNets

Consider a 3 tier HetNet with the femto BSs using mmWave
frequencies. Hence, the femto transmissions do not experience
interference from the macro or the pico BSs, and require
no radio resources from these cells. Time only needs to be
partitioned between the macro and pico tier to avoid cross-
tier interference. We consider a setup where the allocation is
performed periodically at the beginning of each frame. The
frame length is ∆ seconds. Let π ≤ ∆ denote the time
allocated to the small cells, which will now be used exclusively
by the pico BSs. Therefore, the pico time constraint for Pi will
now be

∑
u∈Ui

yu/Su ≤ π.
1) mmWave link rates and mmWave backhaul: We consider

a setup where the femtos do not have a wired backhaul link.
Pico BS Pi are equipped with special hardware to provide
backhaul over a dedicated mmWave link to each F ij . The
femto BSs employ beam-forming for serving UEs and also
for backhaul.

Consider a UE u ∈ U ij in the range of femto F ij . Let Bm
denote the mmWave bandwidth available for serving UEs.
Let PF i

j
denote the transmit power of the femto BS, and

gF i
j ,u

denote the gain of the link between F ij and the UE
u, including the beam-forming directivity gain of the BS
and the UE, path loss and shadowing loss. σ2 is the noise
power. The rate of the link between femto F ij and UE u
is Tu = Bm log2(1 + PF i

j
gF i

j ,u
/(
∑
k 6=j PF i

k
gF i

k,u
+ σ2)).

Due to the directional nature of mmWave links, we take∑
k 6=j PF i

k
gF i

k,u
to be zero for the numerical simulations in

this section. For the blocked UEs, Tu is zero - these UEs have
to associate with a pico or macro BS. We assume that the rate
Tu remains constant for the duration of the frame.

Let Sij denote the rate of the backhaul link between the pico
Pi and femto F ij , calculated similarly as Tu. The backhaul

link has to carry all the traffic into the femto F ij , i.e.,∑
u∈Ui

j
zu. Due to the half-duplex constraint, the frame has to

be partitioned between the backhaul and UE transmissions of
a femto. Therefore, the femto time constraint for F ij will now
be

∑
u∈Ui

j
zu/S

i
j +

∑
u∈Ui

j
zu/Tu ≤ ∆. This is equivalent to∑

u∈Ui
j
zu/T

′
u ≤ ∆, where

T ′u = Tu/(1 + Tu/S
i
j) (7)

2) Rate requirements: Let au (in bits/s) represent the rate
requirement (or target) of a UE u. We assume that the rate
requirements are set by a scheduler (based on some fairness
criterion or a QOS requirement). The number of bits needed
by u in the frame to meet the rate requirement is au∆. Now,
the objective of minimizing the clearing time of the microwave
part of HetNet is formulated as LP (8).

min
xu,yu,zu,π≥0

π +
∑

u∈⋃N
i=1 Ui

xu/Ru

s.t.
∑
u∈Ui

yu/Su ≤ π,∀i ∈ {1, . . . N}∑
u∈Ui

j

zu/T
′
u ≤ ∆,∀j ∈ {1, . . . Ni}, i ∈ {1, . . . N}

xu + yu + zu = au∆,∀u ∈ U (8)

Let ∆̄ be the value of LP (8). Note that when ∆̄ > ∆,
the rate requirements cannot be met. We can take the solution
(x∗,y∗, π∗) and scale by ∆/∆̄ to get a feasible allocation for
the current frame. Similarly when ∆̄ < ∆, scaling by ∆/∆̄
produces a maximal solution, so that no time is wasted in the
frame.

3) Solution and Algorithms: Note that LP (8) is simpler to
solve than LP (1-4) since it has one less variable, εi (we have
a constant ∆ instead). As before, fixing π, the problem can
be decomposed into N independent LPs. The solution of each
LP can be found by a 1D search over parameter α at Pi (i.e.,
inner search algorithm in section IV-A).

To apply the allocation algorithms given in the paper, firstly,
it can be seen that Tu should be replaced with T ′u. Algorithm 2
and Algorithm 3 can now be applied by modifying the inputs.
Fj(α∗,∆) can be implemented as Algorithm 2 to solve for z∗

and β∗j at femto F ij . P(α∗, 0, z∗, a, b, δ) can be implemented
as Algorithm 3 to solve for y∗.

4) Numerical Example: Due to the high rates of mmWave
BSs, the value of Sij has a significant impact on T ′u (unlike the
cases where Sij � Tu). To illustrate this effect, we consider
the same BS setup as in section IV, with mmWave femtos. 30
UEs are uniformly placed within 50 m of each femto BS. The
mmWave simulation parameters are given in Fig. 9(b). Here,
the rate requirement au is the same (50 Mbps) for all the UEs.
The blockage state (blocked or unblocked) of a UE is fixed
according to the blockage probability pb, prior to optimization.
The numerical results can be seen in Fig. 9(a). The UEs
receiving 50 Mbps (or 500 Kb/frame) are the mmWave UEs.
Note that there is not enough bandwidth to support 50 Mbps
rate for the microwave UEs, and hence they get scaled down
rates.
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(a) Cumulative distribution of throughput

(b) mmWave simulation parameters

Fig. 9: Effect of backhaul bandwidth and blocking on mmWave HetNet
capacity

From Fig. 9(a), it can be observed that changing blockage
probability does not significantly change the solution of LP
(8). This is because some UEs need to be offloaded to the
microwave BSs anyway, and blocking just affects which ones
are offloaded. In this case, adapting the bias-values based on
the state of blocking only has a minor impact. The proposed
scheme can therefore be implemented on a slower-time scale,
with the blocked UEs changing association to microwave BSs
using the given bias-values, and the mmWave femto swaps the
blocked UE with an unblocked microwave UE (the one with
the highest ραu).

Secondly, it can be seen from Fig. 9(a) that the backhaul
bandwidth WB has a significant impact on the traffic supported
by the mmWave BSs. (7) shows that doubling Sij does not
double T ′u. In Fig. 9(a), doubling WB from 50 MHz to 100
MHz, only increased the number of femto UEs by ≈ 10%. We
conclude that backhaul bandwidth needs to be accounted for
in capacity planning, and there are diminishing returns from
increasing it.

APPENDIX A: PROOFS OF THEOREMS 1,2 & 3

We develop the necessary theory in Appendices B-E. The
results will be used in the proofs here. The layout of other
Appendices is as follows. In Appendix B, we introduce the
Lagrangian and the dual-variables corresponding to LP (5) and
derive structural results of the optimal solution using the KKT

conditions. In Appendix C, we present the femto allocation
results using the KKT conditions, i.e., Lemmas supporting
Algorithm 2. In Appendix D, we present the pico allocation
results, i.e., Lemmas supporting Algortithm 3. The results of
Appendices C-D were derived under the assumption that the
dual variable α > 0. In Appendix E, we deal with the case
α = 0.

Proof of Theorem 1. Suppose the dual-variables α, βj > 0,
∀j ∈ {1, . . . Ni} for εi = ε∗i . The proof of (1-3) of Theorem 1
follows from (9-12) of Appendix B. The results of Fig. 3
follow from Lemma 1 and Lemma 2 in Appendix B.

Suppose one or more of the dual-variables α, βj are zero
for εi = ε∗i . It follows from Lemmas 9 & 10 in Appendix E,
that there exist αm and βmj corresponding to the zero dual-
variables such that (1-3) of Theorem 1 hold. Now, the results
of Fig. 3 follow from Lemma 1 and Lemma 2 with α (and
βj) replaced with αm (and βmj resp.).

Proof of Theorem 2. Suppose the dual variable α > 0 for εi =
ε∗i . If Pico allocation case 1 (in Appendix D) holds, then α =
Swl

/Rwl
is an optimal dual-variable from Lemma 7. If Pico

allocation case 2 (in Appendix D) holds, then α = SaTb/TaRb
from Lemma 8.

Suppose the dual variable α = 0 for εi = ε∗i . It follows from
Lemma 9 in Appendix E that ∃αm ∈ A such that θ(αm, εi) =
0. Here, α∗ = αm.

Similarly, suppose the dual-variable βj > 0 for εi = ε∗i .
Then β∗j = ραu from Appendix C. Otherwise if dual-variable
βj = 0, βmj = minu∈Ui

j
ραu is the rate-bias multiplier β∗j from

Lemma 10 in Appendix E.

Proof of Theorem 3. Suppose the dual variable α > 0 for
εi = ε∗i . It follows from Lemmas 4-6 that Algorithm 2
determines z∗ with α, ε∗i as input (See Appendix C). It follows
from Lemmas 7-8 that Algorithm 3 determines y∗. (See
Appendix D)

If the dual variable α = 0, the proof follows from Lemma 9
in Appendix E.

APPENDIX B: KKT CONDITIONS AND LAGRANGIAN
MINIMIZATION

For the given π, we start by fixing a εi ∈ [0, π]. We consider
LP (5) for the given π, εi5.

Consider the Lagrangian L of LP (5), given as

L(x,y, z, α,β,γ) =
∑
u∈Ui

xu/Ru + α(
∑
u∈Ui

yu/Su + εi − π)

+

Ni∑
j=1

βj(
∑
u∈Ui

j

zu/Tu − εi)−
∑
u∈Ui

γu(xu + yu + zu −Du)

where α, βj and γu are the dual variables corresponding to
the constraints of LP (5) (see page 3).

For a fixed (π, εi), LP (5) is equivalent to the Lagrangian
minimization problem minxu,yu,zu≥0 L with the optimal dual-
variables. The KKT conditions provide sufficient conditions
for optimality of the primal and dual variables.

5Let g(π, εi) denote the solution of LP (5) for the given pair (π, εi). Note
that fi(π) = minεi∈[0,π] g(π, εi), and ε∗i = arg minεi∈[0,π] g(π, εi).
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A. Stationarity conditions

From the first order stationarity conditions of the KKT
conditions, we must have

∂L/∂xu = 1/Ru − γu ≥ 0 (9)

and γu = 1/Ru if xu > 0. i.e., minimum occurs either at a
stationary point or at a point on the boundary. Similarly, we
have

∂L/∂yu = α/Su − γu ≥ 0 and γu = α/Su if yu > 0
(10)

∂L/∂zu = βj/Tu − γu ≥ 0 and γu = βj/Tu if zu > 0
(11)

Using (9-11), γu ≤ min{1/Ru, α/Su, βj/Tu}. Since xu +
yu + zu = Du > 0, at least one of xu, yu, zu > 0 and hence,
at least one of the equality conditions of (9-11) must hold.
Therefore,

γu = min{1/Ru, α/Su, βj/Tu} ≥ 0 (12)

Going forward, we take [xu, yu, zu]u∈Ui to be the solution
of LP (5) for the given fixed π, εi, and α, βj , γu to be the
optimal dual variables, i.e., KKT conditions hold for these
values.

Assumption 1. For any u, v ∈ Ui and u 6= v, we assume that
1) Tu/Su 6= Tv/Sv , 2) Su/Ru 6= Sv/Rv and 3) Tu/Ru 6=
Tv/Rv . Furthermore, for any (u1, v1) 6= (u2, v2) ∈ Ui × Ui,
we assume that Su1

Tv1/Rv1Tu1
6= Su1

Tv1/Rv1Tu1
.

Note that the rates Ru, Su, Tu are arbitrary real values, and
Assumption 1 holds with probability 1. For the sake of brevity,
we ignore the highly special cases where Assumption 1 does
not hold, e.g., a case where two different UEs have exactly
the same rate-ratios mentioned in Assumption 1.

B. Lemmas on relationship between primal and dual variables

Recall that ραu := min{Tu/Ru, αTu/Su} from Theorem 1.
Proofs of the following three lemmas are direct consequences
of the stationarity conditions (9-12).

Lemma 1. Suppose the dual variable α > 0. Then
1) zu = Du, if ραu > βj and 2) zu = 0, if ραu < βj .

Proof. Suppose ραu > βj . This implies βj/Tu <
min{1/Ru, α/Su}. From (12), we have γu = βj/Tu and
γu < min{1/Ru, α/Su}. Now from (9-10), we have xu =
0, yu = 0, and hence zu = Du. Therefore, ραu > βj implies
zu = Du.

Now suppose ραu < βj . This implies βj/Tu >
min{1/Ru, α/Su}. From (12), βj/Tu > γu. Now from (11),
we have zu = 0. Therefore, ραu < βj implies zu = 0.

Lemma 2. Suppose D′u := Du − zu > 0 for some u ∈ Ui.
Then
1) yu = D′u, if Su/Ru > α and 2) yu = 0, if Su/Ru < α.

Proof. Suppose Su/Ru > α. This implies 1/Ru > α/Su,
and hence γu < 1/Ru from (12). We have xu = 0 from (9).
Therefore, yu + zu = Du. This proves 1).

For 2), suppose Su/Ru < α. This implies 1/Ru < α/Su,
and hence γu < α/Su from (12). Therefore, yu = 0 from
(10).

Lemma 3. Consider a user u ∈ U ij . 1) If xu, yu > 0, then
α = Su/Ru. 2) If yu, zu > 0, then βj = ραu = αTu/Su and
3) If zu, xu > 0, then βj = ραu = Tu/Ru.

Proof. Suppose xu, yu > 0. From (9-11), we have γu =
1/Ru, γu = α/Su. Therefore, α = Su/Ru. This proves 1).

Suppose yu, zu > 0. From (9-11), we have γu = α/Su,
γu = βj/Tu . Therefore, βj = αTu/Su

3) can be proved using similar arguments.

APPENDIX C: FEMTO ALLOCATION

In this section, we present the femto allocation [zu]u∈Ui
j

for
an arbitrary j ∈ {1, . . . Ni}. We will show that Algorithm 2
determines the femto allocation. This is done under the as-
sumption that the dual-variable α > 0. The other case α = 0
is done in Appendix E.

Assume α > 0. Recall that ραu := min{Tu/Ru, αTu/Su}.
Sort users uk in U ij in descending order of ραuk

such that
ραu1
≥ ραu2

≥ . . . ≥ ραuK
. Here K = |U ij |. Note that ραuk1

=
ραuk2

for at most one pair k1, k2 such that 1 ≤ k1 < k2 ≤ K
(otherwise Assumption 1 is violated). Therefore, exactly one
of the following three cases must hold

Case 1 (No split user case): Here (13) holds
K∑
k=1

Duk
/Tuk

≤ εi (13)

The femto allocation for this case is given in Lemma 4, which
justifies step 3 of Algorithm 2.

Case 2 (Single split user case): ∃l ≤ K such that

1)

l−1∑
k=1

Duk
/Tuk

≤ εi <
l∑

k=1

Duk
/Tuk

(14)

2) ραul
6= ραuk

,∀k ∈ {1, 2, . . .K} − {l} (15)

The femto allocation for this case is given in Lemma 5, which
justifies step 4 of Algorithm 2.

Case 3 (Two split users case): ∃l ≤ K − 1 such that

1)
l−1∑
k=1

Duk
/Tuk

≤ εi <
l+1∑
k=1

Duk
/Tuk

(16)

2) ραul
= ραul+1

(17)

For the two split users, w.l.o.g assume ραul
= αTul

/Sul
and

ραul+1
= Tul+1

/Rul+1
. Define a := ul, b := ul+1 and δ :=

εi −
∑l−1
k=1Duk

/Tuk
. Here, a is the pico-femto split user and

b is the macro-femto split user.
The femto allocation for this case is given in Lemma 6,

which justifies step 5 of Algorithm 2. Note that za, zb are not
given by Lemma 6, and will be given in Lemma 8.

Lemma 4. Suppose α > 0 and (13) holds. Then zuk
=

Duk
,∀1 ≤ k ≤ K and βj = 0.

Proof. We use proof by contradiction to show that zuk
=

Duk
,∀1 ≤ k ≤ K. Suppose not and assume zup

< Dup
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for some 1 ≤ p ≤ K. Since zuk
≤ Duk

,∀k 6= p, we have∑K
k=1 zuk

/Tuk
<

∑K
k=1Duk

/Tuk
≤ εi from (13). Therefore

βj = 0 from complementary slackness. If βj = 0, we have
zup = Dup from Lemma 1, which is a contradiction to the
assumption. Hence, zuk

= Duk
,∀1 ≤ k ≤ K.

Now for determining βj , if the inequality in (13) is strict,
we have

∑K
k=1 zuk

/Tuk
< εi, and complementary slackness

implies βj = 0. Otherwise, if the equality in (13) holds, the
KKT conditions hold for any βj ∈ [0, ραuK

].

Lemma 5. Suppose α > 0 and ∃l ≤ K such that (14),(15)
hold. Then βj = ραul

and

zuk
=


Duk

for 1 ≤ k ≤ l − 1

Tul
(εi −

∑l−1
k′=1Duk′/Tuk′ ) for k = l

0 for l + 1 ≤ k ≤ K

Proof. 1) Firstly, we show that zuk
= Duk

,∀1 ≤ k ≤ l − 1
using proof by contradiction.

Suppose not and assume zup
< Dup

for some 1 ≤ p ≤ l−1.
Note that ραp ≤ βj from Lemma 1. This implies βj ≥ ραp > ραl
from (15). Therefore, zuk

= 0,∀l ≤ k ≤ K from Lemma 1.
This implies

∑K
k=1 zuk

/Tuk
<

∑l−1
k=1Duk

/Tuk
≤ εi from

(14). Therefore, βj = 0 from complementary slackness.
Observe that βj = 0 implies zup = Dup from Lemma 1,
which is a contradiction to the assumption zup < Dup . Hence,
zuk

= Duk
,∀1 ≤ k ≤ l − 1.

2) Now, we show that zuk
= 0,∀l+1 ≤ k ≤ K using proof

by contradiction.
Suppose not, and assume zup > 0 for some l+ 1 ≤ p ≤ K.

This implies βj ≤ ραp . Therefore, ραul
> ραp ≥ βj from (15).

Therefore, zuk
= Duk

,∀1 ≤ k ≤ l from Lemma 1. This
implies

∑K
k=1 zuk

/Tuk
≥ ∑l

k=1Duk
/Tuk

> εi from (14).
This violates the primal constraint that

∑K
k=1 zuk

/Tuk
≤ εi,

which is a contradiction. Hence, zuk
= 0,∀l + 1 ≤ k ≤ K.

3) We now show that βj > 0 and determine zul
.

Suppose not, and assume βj = 0. We have zul
= Dul

from Lemma 1, which implies
∑K
k=1 zuk

/Tuk
> εi from

(14). This is a contradiction since it violates the primal
constraint that

∑K
k=1 zuk

/Tuk
≤ εi. Hence, βj > 0, which

implies
∑K
k=1 zuk

/Tuk
= εi from complementary slackness.

Substituting the other values, zul
= Tul

(εi−
∑l−1
k=1Duk

/Tuk
)

Note that when the left inequality of (14) is strict, 0 < zul
<

Dul
, which implies βj = ραul

from Lemma 3. Otherwise,
if the equality holds in the left inequality of (14), the KKT
conditions hold for any βj ∈ [ραul

, ραul−1
].

Lemma 6. Suppose α > 0 and ∃l ≤ K−1 such that (16),(17)
hold. Let a := ul, b := ul+1 and δ := εi −

∑l−1
k=1Duk

/Tuk
.

W.l.o.g, let ραa = αTa/Sa and ραb = Tb/Rb. Then

zuk
=

{
Duk

for 1 ≤ k ≤ l − 1

0 for l + 2 ≤ k ≤ K
za/Ta + zb/Tb = δ, α = SaTb/TaRb, and βj = ραa .

Proof. It can proved that zuk
= Duk

,∀1 ≤ k ≤ l − 1 and
zuk

= 0,∀l + 2 ≤ k ≤ K using similar arguments as in the
proof of Lemma 5.

Note that ραa = ραb implies αTa/Sa = Tb/Rb. Hence α =
SaTb/RbTa.

It can proved that βj > 0 using similar arguments as
in the proof of Lemma 5. From complementary slackness,∑K
k=1 zuk

/Tuk
= εi. Substituting other z values, we have

za/Ta + zb/Tb = δ.
Note that δ < Da/Ta +Db/Tb from the right inequality of

(16). This implies either za < Da or zb < Db. Therefore, βj ≥
ραa = ραb from Lemma 1. Suppose the left inequality of (16) is
strict, then δ > 0. This implies at least one of za, zb > 0, we
have βj ≤ ραa = ραb from Lemma 1. Therefore, βj = ραa when
the left inequality of (16) is strict. Otherwise, if the equality
holds, the KKT conditions hold for any βj ∈ [ραa , ρ

α
l−1].

APPENDIX D: PICO ALLOCATION

We will present the pico allocation [yu]u∈Ui under the
assumption α > 0. The other case α = 0 is done in
Appendix E. Let D′u := Du − zu denote the residual file
after the femto allocation for u ∈ Ui −{a, b}. Recall that a, b
are the split users from (16 -17) in Appendix C.

Let W denote the set of u ∈ Ui−{a, b} such that D′u > 0,
i.e, positive residual file sizes after femto allocation. Sort the
users wk ∈W such that Sw1/Rw1 > . . . > Sw|W |/Rw|W |. We
determine the pico allocation [ywk

]
|W |
k=1, ya, yb as the following

two cases.

A. Pico allocation case 1

Suppose conditions (16-17) do not hold for any j ∈
{1, . . . Ni}, i.e., Case 3 (Two split users case) in Appendix C
does not hold for any j. Here, {a, b} = φ. Since α > 0,
we have

∑
u∈Ui

yu/Su =
∑|W |
k=1 ywk

/Swk
= π − εi from

complementary slackness. Therefore, ∃l ≤ |W | such that
l−1∑
k=1

D′wk
/Swk

< π − εi ≤
l∑

k=1

D′wk
/Swk

(18)

The following lemma provides the pico allocation for this
case and justifies step 5 of Algorithm 3.

Lemma 7. Suppose α > 0 and {a, b} = φ. Also, suppose that
(18) holds for l ≤ |W |. Then

ywk
:=


D′wk

for 1 ≤ k ≤ l − 1

Swl
(π − εi −

l−1∑
k′=1

D′w
k′

Sw
k′

) for k = l

0 for l + 1 ≤ k ≤ |W |
Moreover, α = Swl

/Rwl
.

Proof. Firstly, we show that ywk
= D′wk

,∀1 ≤ k ≤ l − 1,
using proof by contradiction.

Suppose not, and assume ywp
< D′wp

for some 1 ≤ p ≤
l − 1. Note that this implies Swp

/Rwp
≤ α from Lemma 2.

Therefore, Swk
/Rwk

< α, ∀p + 1 ≤ k ≤ |W |. Therefore,
ywk

= 0,∀l ≤ k ≤ |W |. This implies
∑|W |
k=1 ywk

/Swk
≤∑l−1

k=1D
′
wk
/Swk

< π − εi from (18). Therefore, α = 0 from
complementary slackness, which implies ywp = D′wp

from
Lemma 2. This is a contradiction to the assumption ywp

<
D′wp

. Hence, ywk
= D′wk

,∀1 ≤ k ≤ l − 1.
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Now, we show that ywk
= 0,∀l+1 ≤ k ≤ |W |, using proof

by contradiction.
Suppose not, and assume ywp > 0 for some l + 1 ≤

p ≤ |W |. Note that this implies Swp/Rwp ≥ α from
Lemma 2. Therefore, Swk

/Rwk
> α,∀1 ≤ k ≤ p − 1. Since

l ≤ p − 1, ywk
= D′wk

,∀1 ≤ k ≤ l from Lemma 2, which
implies

∑|W |
k=1 ywk

/Swk
≥ ∑l

k=1D
′
wk
/Swk

+ ywp/Swp >
π − εi from (18). This violates the primal constraint that∑|W |
k=1 ywk

/Swk
≤ π − εi, which is a contradiction.

Now we determine α. If the right inequality in (18) is strict,
then 0 < ywl

< D′wl
and xwl

> 0. Hence, α = Swl
/Rwl

from
Lemma 3. Otherwise, if the equality holds in (18), the KKT
conditions hold for any α ∈ [Swl+1

/Rwl+1
, Swl

/Rwl
].

B. Pico allocation case 2

Suppose conditions (16-17) of Case 3 (Two split users)
hold for some j ∈ {1, . . . Ni} (See Appendix C). Lemma 8
provides the pico allocation for this case, and justifies step 7
of Algorithm 3.

Lemma 8. Suppose α > 0 and conditions (16-17) of Case
3 (Two split users) hold for some j ∈ {1, . . . Ni} (See
Appendix C). Then α = SaTb/TaRb and

ywk
=

{
D′wk

for 1 ≤ k ≤ l
0 for l + 1 ≤ k ≤ |W |

ya = Sa(π − εi −
l∑

k=1

D′wk
/Swk

)

yb = 0, za = Da−ya & zb = Tb(δ−za/Ta) . Further, (16-17)
do not hold for any j′ 6= j .

Proof. Note that α = SaTb/TaRb from Lemma 6. Due to
Assumption 1, Swk

/Rwk
6= α,∀1 ≤ k ≤ |W |. Therefore,

∃l ≤ |W | such that Swk
/Rwk

< α,∀1 ≤ k ≤ l and
Swk

/Rwk
> α, ∀l + 1 ≤ k ≤ |W |. Therefore, ywk

=
D′wk

,∀1 ≤ k ≤ l and ywk
= 0,∀l + 1 ≤ k ≤ |W | from

Lemma 2.
It remains to determine ya, za, yb, zb. Recall from Lemma 6

that ραb = Tb/Rb < αTb/Sb, which implies Sb/Rb < α.
Therefore, yb = 0 from Lemma 2.

Since α > 0, we have
∑
u∈Ui

yu/Su = π − εi from
complementary slackness. Substituting other y values, we get
ya = Sa(π − εi −

∑l
k=1D

′
wk
/Swk

).
For determining za, zb, recall that ραa = αTa/Sa < Ta/Ra

and hence 1/Ra > γa from (12). Therefore, xa = 0 and
za = Da − ya from (9). Now, zb can be determined from
za/Ta + zb/Tb = δ.

Lastly, we prove that (16-17) do not hold for any j′ 6=
j. Suppose not and assume (16-17) holds for some j′ ∈
{1, . . . Ni} − {j}. It follows from Lemma 6 that ∃(a′, b′) 6=
(a, b) such that α = SaTb/TaRb = Sa′Tb′/Ta′Rb′ , which
violates Assumption 1.

APPENDIX E: ZERO VALUED DUAL VARIABLES

In Appendices B-D, we have established that Θ(α, εi)
determines the solution of LP (5) for any π, εi; provided

the dual variable α > 0. Here, α is also the pico rate bias
multiplier. In this Appendix, we will show that there exist
positive rate bias multipliers (such that (9-12) hold) when the
corresponding dual-variables are zero.

Lemma 9. If the dual variable α = 0, ∃ a positive rate
bias multiplier αm ∈ A such that Θ(αm, εi) gives an optimal
allocation, and (9-12) hold when α is replaced with αm.

Proof. Since α = 0; γu = 0,∀u ∈ Ui from (12). This implies
1/Ru > γu and xu = 0,∀u ∈ Ui from (9). Therefore, the
optimal value of the LP (5) is 0, and LP (19) must have a
value ≤ π under the optimal solution. Note that LP (19) is a
two-tier LP, which was considered in [25].

min
yu,zu≥0

∑
u∈Ui

yu/Su

s.t.
∑
u∈Ui

j

zu/Tu ≤ εi,∀j ∈ {1 . . . Ni}

yu + zu = Du,∀u ∈ Ui (19)

Define αm := minv∈Ui
Sv/Rv and note that Su/Ru ≥

αm,∀u ∈ Ui. Therefore, αmTu/Su ≤ Tu/Ru which implies
ραm
u = αmTu/Su,∀u ∈ Ui. Notice that when αm is given

as an input to Θ(αm, εi), the UEs u ∈ U ij will be sorted
according to Tu/Su in Algorithm 2 for each j ∈ {1, . . . Ni}.
The femto allocation in this case coincides with the optimal
two tier solution in [25]. Hence, Θ(αm, εi) solves LP (19)
and produces an allocation which satisfies xu = 0,∀u ∈ Ui.
Since the value of the objective function

∑
u∈Ui

xu/Ru = 0,
the solution is optimal. Hence, (9-12) hold under this optimal
solution with the pico rate bias multiplier αm in place of
α.

Lemma 10. If the dual variable βj = 0, ∃ a postive rate bias
multiplier βmj such that (9-12) hold when βj is replaced with
βmj .

Proof. Recall that when βj = 0 in Lemma 4, zuk
=

Duk
,∀1 ≤ k ≤ K. Consider βmj := ραuK

. Since ραuk
≥

βmj ,∀1 ≤ k ≤ K, it follows βmj /Tuk
< min{1/Ruk

, α/Suk
}.

Hence, the rate-bias rules (9-12) hold when βj is replaced with
βmj .
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