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Abstract—This paper presents a new distributed slot reserva-
tion frame-work for joint resource allocation and flow control in
mmWave IAB networks. We derive the Dynamic Slot Reservation
(DSR) algorithm from a novel approach to solve a minimum
clearing time linear program in a completely distributed manner.
The algorithm to solve this problem, the Static Slot Reservation
(SSR) algorithm, is also a contribution of the paper. We compare
the delay performance of the DSR algorithm with a well known
optimal, centralized algorithm, the joint-MWM algorithm [1],
[2], for a realistic IAB network scenario of multi-hop flows.
We show that flows that traverse several links have significantly
lower delays under DSR than under the joint-MWM algorithm.
This paper also provides an instantaneous rate control policy
for IAB networks which changes flow rates based on the
number of flows at each node in the network. The flow rates
under this policy are the same as the steady-state flow rates
achieved by the DSR algorithm. We prove that the proposed
flow control policy provides stability for all flow arrival rate
vectors that are achievable by any flow control policy. This paper
provides distributed admission control policies to provide rate
and/or latency guarantees to flows under dynamic scenarios with
stochastic flow arrivals and changing access link rates.

I. INTRODUCTION

mmWave cellular networks are expected to play a key role
in the next generation wireless communications (5G) [3]. They
are capable of delivering very high rates, due to the vast
amount of spectrum available in the mmWave band. However,
wireless communication at mmWave frequencies comes with
two major obstacles, including high isotropic propagation loss
and sensitivity to blockage by the objects in the environment.
As a result, ultra dense deployments of Next Generation
Node Bases (gNBs) with small cell sizes and directional
communication using beam-forming, are being considered to
provide universal coverage.

Under such deployments, it is prohibitively expensive to
provide fibre backhaul support to all the gNBS. Hence, there is
a growing interest in multi-hop relaying (or self backhauling)
for mmWave cellular networks. Notably, as part of its stan-
dardization efforts, 3GPP has completed a recent study item
on the potential solutions for efficient operation of integrated
access and wireless backhaul (IAB) for NR [4]. The study
emphasizes the joint consideration of mmWave radio-access
and backhaul for mmWave cellular networks. The ability of
gNBs to point very narrow, high gains beams, and the high

This research was supported in part by the Australian Research Council
under Discovery Project DP180103550. It was also supported by a iMQRTP
PhD scholarship from Macquarie University.

bandwidth, makes mm-wave an attractive band in which to
integrate access and backhaul.

In this paper, we consider a multi-hop IAB network, where
a fraction of gNBs are deployed with dedicated fiber backhaul
links, referred to as IAB donors [4]. The other gNBs (referred
to as IAB nodes) relay their backhaul data over wireless
mmWave links, possibly in multiple hops to an IAB donor.
According to [4], an IAB node establishes a link to a parent
node (either another IAB node or a donor) and the central
unit (CU) at the IAB donor establishes a forwarding route
to the IAB node via the parent. Therefore, the traffic of a
UE is forwarded along this established route from the IAB
donor to the UE (in downlink). We focus on the spanning tree
(ST) topology from [4], where each IAB node has exactly one
parent node (either a IAB node or the IAB donor). An example
of such an IAB network can be seen in Figure. 1(a).

We address two major challenges of multi-hop IAB net-
works in this paper, 1) Distributed flow control and resource
allocation among wireless and backhaul links in an in-band
backhauling scenario (i.e. access and backhaul links use the
same frequency band) and 2) Providing end-to-end Quality of
Service (QoS) guarantees for UEs. In an in-band scenario, as
we consider in this paper, there are constraints on simultaneous
link activation due to half-duplex communication. Hence, link
activation (and time slot allocation) has to be coordinated
across the network to avoid conflicts. Secondly, the traffic of
a UE may have to be forwarded along several backhaul links
due to the multi-hop nature of the IAB network. Hence, the
end-to-end flow rate of a UE depends on the congestion level
at each link in the path from IAB donor to the UE. Ensuring
end-to-end QoS for existing UEs is a challenging problem as
new UEs arrive into the network.

The first challenge, 1) above, is part of the general challenge
of joint flow control and resource allocation in wireless multi-
hop networks [1], [2]. In wireless networks, this challenge
is inherently cross-layer, since resource allocation must be
done in conjunction with finding the optimal flow rates. The
classical Network Utility Maximization (NUM) approach to
optimal cross-layer control utilizes the max-weight algorithm
[5] for resource allocation [1], [2]; this involves finding a
maximum weight feasible set of links, which is NP hard
in general. Recent work has shown that the particular tree
structure of IAB networks makes this max-weight problem
quite simple [6], but still it requires messages to traverse the
network each time a scheduling decision is made, i.e. in each
slot.
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In this paper, we take a different approach that results in a
cross-layer algorithm that is completely distributed and which
does not require finding a network-wide, maximum weight
feasible set of links in each slot. We propose a distributed
joint flow control and resource allocation algorithm for IAB
networks, the Dynamic Slot Reservation (DSR) algorithm. The
DSR algorithm is of low complexity and can be implemented
locally at each gNB in the network. We show that it only
requires communication with the neighbors of a gNB. The
algorithm allows for easy extension of the IAB network by
addition of new gNBs, since it is implemented locally at each
gNB. We also show that admission control can be incorporated
in the DSR algorithm to provide QoS guarantees for end-to-
end rate and latency in a distributed manner.

Our new approach is based around solving a minimum
clearing time linear program (3) (formulated in Section III)
for slot/resource allocation. We show how to achieve any
feasible rate vector (within the achievable rate region) using
the solution to the linear program. We develop the Static
Slot Reservation (SSR) algorithm and show that it provides
a completely distributed approach to solving the minimum
clearing time linear program. The SSR algorithm can be
described as a book ahead slot reservation system, where a
link l (updating at slot t) is allowed to reserve a number, τl,
of future slots, which are slots that occur at times later than
t. The choice of slots reserved by l is such that they do not
overlap with the existing reserved slots of conflicting links.

The SSR algorithm performs resource allocation by slot
reservation for a static setup of UEs with fixed rates. We
develop our approach further in the Dynamic Slot Reserva-
tion (DSR) algorithm, by jointly controlling rates and slot
reservation in a dynamic IAB network with stochastic UE
arrivals and departures. The control of flow rates is achieved
by adjusting the τl (numbers of reserved slots) values. The
τl values are decided based on the local information at link
l. We compare the delay performance of the DSR algorithm
with a well known optimal, centralized cross-layer algorithm,
the joint-MWM algorithm [1], [2], for a realistic IAB network
scenario of multi-hop flows. We show that flows that traverse
several links have significantly lower end-to-end delays under
DSR than under the joint-MWM algorithm.

Our contributions are as follows:

• We propose a new distributed slot reservation framework,
the Static Slot Reservation Algorithm, for solving a
minimum clearing time linear program for a deterministic
network setup. This is the book ahead slot reservation
scheme described in Algorithm 1.

• We show that the window size w(t) (defined in (6)) under
the SSR algorithm is non-increasing in Theorem 2 and
that it converges to an optimal solution, i.e. the least
possible value for window size, within a fixed number of
slots which is linear in the number of links, in Theorem 3.
These results establish that the SSR algorithm achieves
all vectors inside the achievable rate region.

• In Section VI, we introduce a dynamic stochastic model
of UE arrivals and departures, and extend the Static
Slot Reservation Algorithm to the dynamic scenario,

which becomes Algorithm 3, the DSR Algorithm. This
algorithm is distributed, using only local information.

• In Section VII, we show that the DSR Algorithm has
comparable performance to a classical centralized algo-
rithm, the joint-MWM algorithm from [1], [2], with better
performance for flows with a larger number of hops.

• In Section VIII, we consider a stationary flow control
policy which instantaneously achieves the steady state
flow rates of the DSR Algorithm, changing flow rates
every time that the network state changes. In Theorems 5
and 6, we characterize the arrival rate vectors for which
ergodicity of the state Markov process is possible under
some stationary flow control policy. Theorem 6 shows
that the network state Markov process is ergodic under
the proposed flow-control policy for all the arrival rate
vectors where ergodicity is possible.

• In Section IX, we derive the flow rates received by each
UE as a function of the network state in Theorem 7. We
use this result to propose a distributed admission control
scheme which provides guaranteed QoS.

A. Related Work

The NUM approach for internet congestion control was
introduced in [7]. The framework was applied for conges-
tion/flow control in the internet and was used to derive network
capacity in [8]–[10]. The NUM framework was extended to
multi-hop wireless networks in [1], [2], [11], where cross-layer
algorithms for joint flow control, routing and scheduling were
developed. In the wireless multi-hop networks, the scheduling
component requires the centralized max-weight algorithm for
optimality [5].

System level analysis of mmWave IAB networks with full-
duplex and half-duplex self backhualing was recently consid-
ered in [12], under a NUM framework with latency and flow
rate constraints. The rate and latency gains for full-duplex
over half-duplex were derived for a similar model of IAB
tree network, but for a static setup of flows. For mmWave
IAB neworks, the following works have taken an optimization
approach for flow control and resource allocation [13]–[19],
[19]–[22], where only centralized solutions and a static setup
of flows were considered. For a full duplex IAB network, a
weighted proportional fair scheduler, along with an ad-hoc
flow control algorithm was proposed in [13].

For general mmWave multi-hop networks (i.e. not based
on the 3GPP IAB architecture), the NUM framework for
joint congestion control and scheduling was considered in
[23], [24], which also relies on the max-weight algorithm.
For general mmWave multi-hop networks, optimization of
joint routing and resource allocation was considered in [14]–
[20], and utility maximization was used for path selection and
scheduling in [19], [21], [22]. These works have also only
considered centralized solutions and a static setup.

B. Organization of the paper

In Section II, we provide the system model for a static IAB
network with a fixed set of UEs and with fixed data rates. In
Section III, we propose a notion of rate vector achieveability
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and introduce a minimum clearing time resource allocation
problem for this deterministic setup. In Section IV, we present
the Static Slot Reservation Algorithm, and in Section V,
we show that it converges to the solution of the minimum
clearing time linear program. In Section VI, we introduce the
dynamic system model with stochastic UE request arrivals and
departures, and present the Dynamic Slot Reservation (DSR)
Algorithm. In Section VII, we present numerical results. In
Section VIII, we provide stability results for a policy which
instantaneously realizes the steady state flow rates of the DSR
algorithm. In Section IX, we provide distributed admission
control policies which can be implemented in conjunction with
the DSR algorithm to provide end-to-end QoS guarantees. In
Section X, we provide conclusions and discuss future work.

II. SYSTEM MODEL

Core 

Network
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(b) Graph

Fig. 1. IAB Network and its graph representation

Consider a downlink multi-hop IAB network where B is the
set of gNBs and U is the set of UEs, e.g. see Fig. 1(a). Here,
r ∈ B is the IAB donor which has a fibre backhaul connection,
and the other gNBs relay their backhaul data from r to the UE,
over the mmWave links. We consider the tree topology where
the backhaul data of each gNB b ∈ B − {r} is routed from a
unique parent node p(b) ∈ B−{b}. We represent the network
using a rooted tree G = (V,L, r), where V = U

⋃
B is the

set of nodes, L is the set of wireless links, including gNB-
gNB backhaul links and gNB-UE access links. For example,
Fig. 1(b) shows the graph representation for the IAB network
in Fig. 1(a).

We consider a slotted model where t ∈ Z+ represents the
t th slot. For a link ℓ ∈ L, we define the allocation of ℓ
in slot t, Uℓ(t), as follows. Uℓ(t) = 1, if slot t is allocated
to ℓ. Otherwise, Uℓ(t) = 0. There are constraints on link
activation as follows. Let Lb denote the set of downstream
links of a gNB b ∈ B. 1) Each gNB b is allowed to transmit

on at most one of its downstream links in Lb in a given time-
slot, e.g. In Fig. 1(b), r is only allowed to transmit on either
link (r, b1) or link (r, b2) in a given time-slot. 2) Half-duplex
constraint: the backhaul link ℓb connecting b and p(b), cannot
be activated at the same time as a link in Lb. Under these
contraints, links l1 and l2 cannot be active at the same time
if they share a common node (this is known as the node-
exclusive interference model [1], [2]). For each ℓ ∈ L, let
I(ℓ) denote the set of links which cannot be active at the
same time as ℓ. The scheduling constraints are given by the
following equation.

Uℓ(t)Um(t) = 0, ∀m ∈ I(ℓ), t ∈ N (1)

We initially consider a snap-shot model, where each link
ℓ ∈ L is associated with a fixed instantaneous rate Rℓ (in bits
per slot). Each UE u ∈ U is associated with a fixed traffic rate
αu (in bits per slot), which is determined by a flow control
policy at the root gNB r.

III. MINIMUM CLEARING TIME PROBLEM FORMULATION

In this section, the definition of a resource allocation
algorithm, and what it means for a traffic rate vector to
be achievable under the algorithm are given. We formulate
the minimum resource clearing problem as a linear program
(LP). The solution of the LP provides a characterization
of the achievable region, i.e. set of all traffic rate vectors
α := [αu]u∈U which are achievable under some allocation
algorithm.

Definition 1. A resource allocation algorithm is characterized
by a set of |L| allocation sequences, Uℓ ∈ {0, 1}∞ for each
ℓ ∈ L, such that Uℓ(t)Um(t) = 0,∀ ℓ ∈ L,m ∈ I(ℓ), for each
t ∈ N.

Let Pu denote the set of links in the path from u ∈ U to
root r in G. For ℓ ∈ L, we define γℓ :=

∑
u:ℓ∈Pu

αu/Rℓ as
the target utilization of link ℓ, which is the fraction of time ℓ
must be active to satisfy the traffic rate vector α := [αu]u∈U .
We assume that γ := [γℓ]ℓ∈L ∈ Q|L|, i.e. γℓ is a rational
number for each ℓ ∈ L.

Definition 2. The rate vector α is achievable under a resource
allocation algorithm, with allocation sequences Uℓ ∈ {0, 1}∞,
for each ℓ ∈ L, if and only if

lim inf
T→∞

1

T

T∑
t=0

Uℓ(t) ≥ γℓ (2)

for each ℓ ∈ L.

A. Achievable Rate Region

We now characterize the achievable rate region, the region
of traffic rate vectors that are achieved by resource allocation
algorithms. We begin by formulating the Minimum Clearing
Time Linear Program.

Definition 3. A feasible set S ⊆ L is a set of links such that
for each ℓ ∈ S, I(ℓ)

⋂
S = ϕ.
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Note that the scheduled set of links {ℓ ∈ L : Uℓ(t) = 1} in
each slot t is feasible, under a resource allocation algorithm.

We consider the most efficient allocation of slots, which
requires the minimum slots/resources, to achieve γ (and the
corresponding traffic rate vector α) as the minimum clearing
time problem in the following LP (3).

min
∑
S∈S

fS

s.t.
∑

S:ℓ∈S

fS ≥ γℓ, ℓ ∈ L;

fS ≥ 0,∀S ∈ S (3)

where S is the set all feasible sets, and fS is the long-term
fraction of slots allocated to a feasible set S.

We can construct a resource allocation policy, using an op-
timal solution [f∗

S ]S∈S , as follows. Since γ ∈ Q|L|, it follows
that there exists a rational optimal solution [f∗

S ]S∈S ∈ Q|S| of
LP (3). Let S ′ denote the set of S ∈ S such that f∗

S > 0. It is
clear that a strictly positive scaling factor τ ∈ N exists, such
that τf∗

S is a natural number for each S ∈ S ′.
For the sake of convenience, we let [t1 : t2] represent the set

{t1, . . . , t2} for t2 ≥ t1. Consider the following policy which
uses blocks of length B := τ

∑
S∈S f∗

S slots to allocate to the
sets S ∈ S ′. Let {Si}|S

′|
i=1 be an ordering of set S ′. The first

τ∗fS1
slots, [(i−1)B+1 : (i−1)B+ τf∗

S1
], in the i-th block

are allocated to links in set S1, for i ∈ N. The next slots in
the block are allocated in order for j = 2, . . . , |S ′|; i.e. slots[

(i− 1)B + τ

j−1∑
k=1

f∗
Sk

: (i− 1)B + τ

j∑
k=1

f∗
Sk

]
in the i-th block are allocated to each link in set Sj .

From construction, it is clear that each link ℓ ∈ L receives
a long-term fraction

∑
S:ℓ∈S f∗

S/
∑

S∈S f∗
S of slots, i.e.

lim
T→∞

T∑
t=1

Uℓ(t)/T =

∑
S:ℓ∈S f∗

S∑
S∈S f∗

S

(4)

If the optimal solution, (f∗
S)S∈S , of the LP (3) satisfies∑

S∈S f∗
S ≤ 1, then

∑
S:ℓ∈S f∗

S/
∑

S∈S f∗
S ≥ γℓ for each ℓ ∈

L. Hence from (4), the traffic rate vector α is achieved by the
proposed policy. In Theorem 1, we show that

∑
S∈S f∗

S ≤ 1 is
also a necessary condition for achievability, thus characterizing
the achievable region.

Theorem 1. The traffic rate vector α is achievable, if and
only if the optimal value of LP (3), f∗ :=

∑
S∈S f∗

S ≤ 1.

Proof. See Appendix A.

Solving LP (3) directly involves gathering the necessary
information at a central node. Moreover, the number of
feasible sets |S| under consideration, grows exponentially in
the size of the network. In this paper, we show that problem
(3) is not intrinsically hard. In fact, we provide a distributed
resource allocation algorithm which requires at link ℓ only
local information from the neighboring links in I(ℓ). We show
that the algorithm converges to an optimal solution of LP (3),
after a number of slots that is linear in the size of the network.

IV. STATIC SLOT RESERVATION ALGORITHM

For the resource allocation algorithm, we consider a load
τℓ := γℓτs on each link ℓ, by fixing a scaling factor τs ∈ N1.
The scaling factor τs is chosen such that τℓ is a positive integer
for each ℓ ∈ L, which is possible since γℓ is a rational number
for each ℓ. We treat τℓ as the number of slots required by ℓ.

The algorithm can be described as a book ahead slot
reservation scheme, where a link ℓ ∈ L, updating at slot t, is
allowed to reserve τℓ future slots (i.e. slots > t). The choice
of slots has to be made such that 1) they form a contiguous
block, i.e. [t′ : t′ + τℓ − 1] for some t′ > t; 2) they do not
overlap with any of slots currently reserved by the conflicting
links in I(ℓ). We refer to the first slot t′ in the block as a
starting point, and the last slot t′ + τℓ − 1 as an ending slot.

It is possible to describe the allocations using only starting
points, due to contiguous slot bookings. Hence, the proposed
algorithm satisfies the following Property 1.

Property 1. For each ℓ ∈ L, there exists a sequence of starting
points {snℓ }∞n=1 ⊆ N which determine the allocation sequence
Uℓ as follows.

Uℓ(t) :=

{
1 if t ∈

⋃∞
n=1[s

n
ℓ : snℓ + τℓ − 1]

0 otherwise.
(5)

We present our distributed slot reservation algorithm, the
Static Slot Reservation (SSR) algorithm in Algorithm 1. In
the algorithm, we use the notation Tℓ(t) to denote the set of
currently booked slots for link ℓ at time t. In lines 1-7 of
Algorithm 1, a set of feasible starting points s1ℓ are calculated
for the initial bookings of slots. Links are ordered arbitrarily,
and the initial blocks of slots are allocated in this order.
The allocation to each link, in line 6, takes into account the
interference constraints from the links which have already been
allocated (i.e. earlier in the ordering). Given the initial starting
points {s1ℓ}ℓ∈L, the update rule (in lines 10-22) generates
the subsequent starting points {snℓ }∞n=2 for each ℓ ∈ L, as
discussed further below.

In Algorithm 1, the next slot booking for a link is updated
at the end of the current booking; e.g. for link ℓ, with current
booking ending at slot t1 = snℓ + τℓ − 1, the next booking is
Tℓ(t1 + 1) = [sn+1

ℓ : sn+1
ℓ + τℓ − 1]. In between the booked

time blocks, for t ∈ [snℓ + τℓ : s
n+1
ℓ − 1], the currently booked

slots do not change: Tℓ(t) = Tℓ(t1 + 1). During the booked
time block, for t ∈ [sn+1

ℓ : sn+1
ℓ +τℓ−1], the currently booked

slots are decremented according to: Tℓ(t) = [t : sn+1
ℓ +τℓ−1].

The update criterion is given in line 2, where the next starting
slot for ℓ, sn+1

ℓ , is determined such that the new block [sn+1
ℓ :

sn+1
ℓ + τℓ−1] does not overlap with current bookings Tℓ′(s

ℓ
n)

of interfering links ℓ′ ∈ I(ℓ). Fig. 2(c) illustrates the new slot
booking at the update step, where I(ℓ) = {li}4i=0. This figure
is discussed further below as part of implementation.

A. Distributed Implementation

Note that during each update, say n-th update for ℓ, the
starting point sn+1

ℓ for the next block is determined only based

1We note that this scaling factor τs may not necessarily be τ from the
previous section.
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Algorithm 1 Static Slot Reservation Algorithm
1 – Initial bookings

1: Consider any arbitrary ordering of links in L as {li}|L|
i=1 .

2: s1l1 = 1, and Tl1(1) := [s1l1 : s1l1 + τl1 − 1]
3: s1li = 0 for each i = 2, . . . , |L|.
4: for i = 2 to |L| do
5: I0(li) = {lj}i−1

j=1

⋂
I(li). // These are links in I(li) for

which initial allocation has been computed in previous iterations.
6: s1li := inf{k ∈ N : [k : k+τli−1]

⋂⋃
l∈I0(li)

Tl(1) =
ϕ}, // A non-conflicted block of slots for li is chosen for initialization.

7: Tli(1) := [s1li : s
1
li
+ τli − 1].

8: end for
2 – Update Rule which generates subsequent bookings

9: t = 1.
10: ni = 1 for each i = 1, . . . , |L|.
11: while t ≥ 1 do
12: for i = 1, . . . , |L| do
13: if t = sni

li
+ τli − 1 then

14: sni+1
li

:= inf{k ∈ N : k > t, [k : k + τli −
1]
⋂⋃

l∈I(li)
Tl(t) = ϕ} // The next block

of allocation for link li is decided here. The algorithm searches for the
earliest non-conflicted block of slots for link li starting from slot t+1.

15: Tli(t+ 1) := [sni+1
li

: sni+1
li

+ τli − 1]
16: ni ← ni + 1
17: else
18: Tli(t+ 1) := Tli(t)− {t}
19: end if
20: end for
21: t← t+ 1
22: end while

on the local information of links in I(ℓ). In the following, we
present a local message passing scheme, which ensures that
each link ℓ has the necessary information

⋃
ℓ′∈I(ℓ) Tℓ′(t) from

links in I(ℓ) during its update at t. An illustration of each
stage of the local message passing scheme is shown in Fig. 2.

In the figure, the link ℓ = (i, j), is beginning its transmission
of block [snℓ : snℓ + τℓ − 1] at time snℓ . During this time
interval, the transmitter gNB i, will book link ℓ’s next time-
block [sn+1

ℓ : sn+1
ℓ +τℓ−1] and pass this information to node j,

as the Tx to Rx message, shown in Fig. 2(b). Note that none of
the neighbouring links {la}4a=0 will be transmitting during this
time-block, so these neighbouring links will not be booking
their next time-blocks during the interval [snℓ : snℓ + τℓ − 1].

Since node j is a gNB, it needs to know about link ℓ’s
newly booked time-block for the future bookings of its own
downstream links l3, l4. Consider any downstream link ℓ′ ∈
Lj= {l3, l4}. At time snℓ , link ℓ′’s next time-block has already
been booked, although it is still in the future, e.g. in Fig. 2(c),
the next time-block of l3 (or l4) is [snℓ +τℓ : s

n
ℓ +τℓ+τl3−1] (or

[snℓ +τℓ+τl3 : snℓ +τℓ+τl3 +τl4−1] respectively). When this
time-block (which is after time snℓ +τℓ−1) starts, node j will
therefore already have the necessary information about link ℓ,
due to the Tx to Rx msg from i (see again Fig. 2(b)). For
the same reason, node i already has the booking information
for the link l0 from its parent p(i), which it received at the

i

l0

l1
l2

l3
l4

ℓ

j⋃ k
∈L

b
T k
(s

n
ℓ
)

(a) Rx to Tx message at time snℓ .

ℓ

j

i
l0

l1
l2

l3 l4

[s
n
+
1

ℓ
: s

n
+
1

ℓ
+
τ ℓ
−
1]

(b) Tx to Rx message during
block [snℓ : snℓ + τℓ − 1].

ℓ

l3 l4

ℓ l2l1

l0

i

p(i)

snℓ + τℓ − 1

Rx to Tx msg
Tx to Rx msg

t = snℓ sn+1
ℓ

j

(c) Illustration of slot bookings

Fig. 2. Message passing implementation

earlier time when it was last acting as a receiver. Node i also
knows the booked times of its other downstream links, since
it is the transmitter. Hence, i has the booking information⋃2

a=0 Tla(s
n
ℓ ) of all the links connected to it, at time snℓ ,

because of the Tx to Rx msgs in the message passing scheme.
Hence, to book the time-block [sn+1

l : sn+1
l + τl − 1] at

time snl , i only requires the information
⋃4

a=3 Tla(s
n
ℓ ), i.e.

the booking information of downstream links from j, which
are the only remaining links in I(ℓ). In the message passing
scheme, this information is sent from j to i in a short uplink
transmission (Rx to Tx msg) in a mini slot at time snℓ , at the
very start of the block. This is illustrated in Fig. 2(a). After
this message, node i books the next time block, and this new
booking information is sent from i to j, as the prior discussed
Tx to Rx msg, during the transmission block [snℓ : snℓ +τℓ−1],
as illustrated in Fig. 2(b).

V. CONVERGENCE RESULTS

In this section, we present our main results regarding the
convergence of the SSR algorithm.

We define window size, w(t), as the smallest positive integer
such that each link ℓ ∈ L has at least τℓ allocated slots in the
interval [t− w(t) + 1 : t]. For t ≥ maxℓ∈L s1ℓ + τℓ − 1,

w(t) := min{w ∈ N :

t∑
t′=t−w+1

Uℓ(t
′) ≥ τℓ,∀ℓ ∈ L}, (6)

It is clear that w(t) ≥ f∗τs, which is the minimum possible
value due to LP (3). First, we show that the window size w(t)
is monotonically non-increasing with t, in Theorem 2. Next,
we prove convergence of w(t) to the optimal value f∗τs in
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Theorem 3, by showing ∃T ≤ maxℓ∈L(s
1
ℓ + τℓ) +

∑
ℓ∈L τℓ,

such that w(T ) = f∗τs. Clearly, the convergence occurs within
a bounded time linear in the size of the network.

The convergent rates under the SSR algorithm achieve the
given rate vector α, since for any time t > T , each link ℓ ∈ L
receives τℓ slots in the interval [t : t+ f∗τs − 1].

Theorem 2. Under Algorithm 1, the window size is non-
increasing. For t ≥ maxℓ∈L s1ℓ + τℓ − 1,

w(t+ 1) ≤ w(t). (7)

Proof. See Appendix A.

Theorem 3. The window-size w(t) for the SSR algorithm,
Algorithm 1, converges to f∗τs before slot T ′ := maxℓ∈L(s

1
ℓ+

τℓ) +
∑

ℓ∈L τℓ, where f∗ is the optimal value in the LP (3),
i.e. ∃T ≤ T ′ such that w(t) = f∗τs, ∀t ≥ T . Furthermore,
f∗ = maxb∈B γℓb +

∑
ℓ∈Lb

γℓ. Here, we take γℓr = 0 since
root r has no parent node.

Proof. See Appendix B.

Note that the allocation in any post-convergence interval
[t : t+ f∗τs − 1], yields an optimal solution {f∗

S}S∈S of LP
(3), as follows.

f∗
S =

1

τs

t+f∗τs−1∑
t′=t

I(S = {ℓ ∈ L : Uℓ(t
′) = 1}) (8)

for each S ∈ S, where I(·) is the indicator function.
Note that the SSR algorithm converges to the optimal

solution of (3) irrespective of the achievability of the traffic
rate vector α ∈ Q|L|, due to Theorem 3. The rate for user
u ∈ U that the SSR converges to is at least αu/f

∗, for each
u ∈ U . If f∗ < 1 then α is an achievable rate vector. If f∗ > 1
then α/f is only an achievable rate vector for any f > f∗.

At this point, we have presented our SSR algorithm and
discussed its implementation of slot bookings using message
passing. We have also shown that window size monotonically
converges to the optimal value in a number of slots that is
linear in the size of the network. As such, it achieves any
traffic rate vector in the achievable rate region.

VI. DYNAMIC SLOT RESERVATION ALGORITHM

The SSR algorithm is applicable for a static setup, where
the UE requests are fixed. When the flow requests are dy-
namic, straightforward implementation of the SSR requires
re-initialization every time the network changes state. In this
section, we consider a dynamic model, with flows that arrive
at random times, and which depart after their data demands
have been met. We propose a dynamic slot reservation (DSR)
algorithm, which dynamically adapts the flow rates and allo-
cates slots to the flows using slot reservation, in a similar way
to the SSR algorithm, but without re-initialization.

In the dynamic scenario, we assume that UE file requests
arrive at a gNB b ∈ B, as an exogenous process. The size
of an arriving UE file is i.i.d exponential with mean D bits.
The UE file request departs the network once the file is fully

downloaded. For a UE request u at gNB b, the access rate
R(b,u) (in bits/slot), takes a value from the set {Ra

1 , . . . , R
a
K},

which is fixed until u departs2. We call the UE requests with
access rate Ra

k, as the k-th class for k = 1, . . . ,K. The arrival
process for k-th class of UE requests at gNB b forms a Poisson
process with rate ν

(k)
b requests per slot.

The network graph in the dynamic case changes with UE
file request arrivals and departures. With a new arrival of UE
request u at gNB b, a new node u and an access link (b, u) is
added to the graph. Similarly, a node and an access link are
removed from the graph with each UE request departure. The
traffic of an active UE request u at a gNB b ∈ B − {r} has
to be routed from root r to node u along the path connecting
r to b. We refer to this traffic flow as being associated with
each link along this path. As before, Rℓb (in bits/slot) is the
fixed rate of the backhaul link ℓb, connecting a parent gNB
p(b) and its child gNB b.

Let N (k)
b (t) denote the number of UE requests of k-th class

at a gNB b ∈ B, and N (t) := {N (k)
b (t)}b∈B,k∈[1:K] denote

the network state, in slot t.
In the following Algorithm 3, we present our Dynamic Slot

Reservation (DSR) Algorithm, which adapts the τℓ values (as
part of flow rate control) based on the state N (t). We now
briefly discuss the criteria for deciding τℓ values and present
results.

A. Stationary flow control policy
Consider a flow control policy which provides an equal end-

to-end rate αN bits/slot for each flow in the network in state
N . Under this policy, the utilization γℓ of a link ℓ is given
by γℓ = αNNℓ/Rℓ, where Nℓ is the number of flows using
link ℓ. It follows from Theorem 3, that for feasibility, γℓb +∑

ℓ∈Lb
γℓ ≤ 1 for each b ∈ B. Hence for the flow rates to be

feasible, αN ≤ 1/Fb(N ) for each b ∈ B, where

Fb(N ) :=
Nℓb

Rℓb

+

K∑
k=1

N
(k)
b

Ra
k

+
∑

b′:p(b′)=b

Nℓb′

Rℓb′
(9)

Hence, (maxb∈B Fb(N ))−1 is the maximum value for flow
rate αN , i.e. it is not possible to provide a higher rate for all
flows. Our policy for setting τ , as used in Algorithm 1, based
on the state N , achieves a rate of at least (maxb∈B Fb(N ))−1

bits/slot for each flow after Algorithm 1 has converged,
assuming no change in the state N .

Our following policy (10), (11), determines the vector τ for
any given state N ∈ Z|B|×K

+ :

τ(b,u) =
τs × 1 bit/slot

R(b,u)
(10)

for each active UE request u at gNB b ∈ B, and

τℓb = τs
Nℓb × 1 bit/slot

Rℓb

(11)

2In this section, we assume the link rate to be fixed on the time-scale of
flow durations. In Section VII we consider a model in which the link rate
changes due to transitions between a LoS and a NLoS state. We also consider
access link rate changes in Section IX-C, in the context of rate guarantees.
Section X provides possible directions for considering full blockage, and
network topology changes in future work.
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for backhaul link ℓb, for b ∈ B, where Nℓb is the total number
of active flows which are using ℓb and τs is the scaling factor.

Recall that each access link ℓ reserves a block of τℓ slots
per window in Algorithm 1. Therefore, under (10), an access
link (b, u) is able to transmit τs bits in a window. Similarly, a
backhaul link ℓb transmits τs bits in a window for each flow
using ℓb, which yields (11). We show in Theorem 4 that under
this proposed scheme, each flow transmits at an end-to-end rate
of τs bits per window.3

Theorem 4. For a fixed state N ∈ Z|B|×K
+ , implementing

Algorithm 1 (SSR) with the τℓ values from (10), (11), leads to
the following steady state conditions.

1) The converged window size is given by τs maxb∈B Fb(N )
slots, where Fb(N ) is given in (9).

2) Each flow receives a flow-rate of at least
(maxb∈B Fb(N ))

−1 bits/slot.

Proof. It follows from Theorem 3 that the converged window
size equals maxb∈B τℓb +

∑
ℓ∈LN

b
τℓ, where LN

b is the set of
downstream links from node b when the network is in state
N . The first result is now immediate from (10) and (11).

Under the SSR algorithm with (11), a backhaul link ℓb is
allocated at least τsNℓb/Rℓb slots in a window, which implies
each flow through ℓb is allocated at least τs/Rℓb slots per
window. Hence, there is a net transfer of at least τs bits for
each flow passing through ℓb in a window. Similarly, for a
access link (b, u), there are at least τs/R(b,u) allocated slots
in a window. Hence, there is a net transfer of at least τs bits
for each UE request u in a window. Hence, there is a net
end-to-end flow rate of at least τs bits per window for each
UE request in the network. The second result now immediate
from the first result on window-size.

The goal of the DSR algorithm is to implement the SSR
algorithm, Algorithm 1, while adapting the τl values according
to (10), (11). In Section VIII, we use Theorem 4 to prove
stability for a policy which instantaneously realizes the steady
state flow rates of the DSR algorithm (given in Theorem 4)
whenever the network state changes .

For the DSR algorithm, we need to address a few practical
considerations which occur in the dynamic case. We discuss
these and describe the DSR algorithm in the following section.

B. The Dynamic Slot Reservation (DSR) Algorithm

The DSR algorithm implements the flow control policy
in (10), (11) along with Algorithm 1, with modifications to
address the following practical considerations.

1) Change of state: When the state N changes due to an
arrival or a departure, the τℓ values for the existing links also
change. The straightforward approach is to re-initialize and
run the slot reservation algorithm, Algorithm 1, with the new
τℓ values. However, such reconfiguration is costly in terms of
message communication across the network.

In the DSR algorithm, suppose the τℓ value changes due to
a change of state at slot t. The link ℓ will simply book its

3We remark that this is not the only way one could assign values to the τℓ’s.
For example, one can construct weighted assignments which give priorities
to different classes of UEs, or to flows with different numbers of hops.

next block of slots according to the updated τℓ value, after its
current ending slot. Hence, no reconfiguration is needed for
state changes under the DSR algorithm4.

2) Small queue sizes: By choosing τℓ according (10), (11),
each link reserves enough slots to transmit τs bits per flow,
for each flow using the link in a window. This will lead to
wasted slots when the queue size corresponding to a flow is
smaller than τs, e.g. when a flow is about to depart and has
only a few residual bits of traffic left.

In the DSR algorithm, we modify the τℓ calculation to
address this issue. We avoid booking the extra slots, by
considering the minimum of τs and qun, where qun is the bits
corresponding to UE request u, at gNB n in lines 3 and 6 in
the LOAD UPDATE procedure in Algorithm 2.

3) Scaling factor: Thus far, the scaling factor τs is chosen
such that τℓ is an integer for each ℓ. In DSR algorithm, we do
not impose this restriction, instead we round up the τℓ value
to the nearest integer in lines 3 and 6 in the LOAD UPDATE
procedure in Algorithm 2.

4) Reservation for new links: As mentioned earlier, the
arrival of a flow adds a new access link to the graph in
the dynamic case. The DSR algorithm has to allocate the
initial block for the newly added link, after which subsequent
allocations can occur by the updating at the end of block. The
initial block has to be allocated such that it does not conflict
with the existing allocations.

In the DSR algorithm, the initial allocation of a new
access link at gNB n is performed in the same block as the
earliest updating access link at gNB n (see lines 26-28 of
RESERVATION UPDATE procedure in Algorithm 2).

In the special case when there are no existing access links at
a gNB n, we reserve one slot which does not conflict with the
backhaul links connected to n (see line 23 in RESERVATION
UPDATE procedure in Algorithm 2)5. This slot will be used
to reserve the initial block for future access link arrivals at n.
This case is denoted by the FUTURE argument for ℓ in the
RESERVATION update procedure in Algorithm 2).

The procedures LOAD UPDATE, NEW ARRIVAL RESER-
VATION and RESERVATION UPDATE which are executed
at each gNB n are presented in Algorithm 2. As mentioned,
the LOAD UPDATE is a sub-procedure used to compute the
τℓ values at each block reservation. The NEW ARRIVAL
RESERVATION is a sub-procedure used to reserve the first
block for new access links, i.e. UE request arrivals. RESER-
VATION UPDATE is the main procedure which calls the other
two procedures. RESERVATION UPDATE books the initial
reservations for new links and updates the reservations for
existing links. It also reserves one slot (for future access links)
in the special case when there are no existing access links.

The main DSR algorithm is presented in Algorithm 3. The
lines 1-8 are initialization, where one slot is reserved for each

4Note that the same approach of adapting τl’s can be used to deal with
changing access link rates, e.g. due to changes in LoS/NLoS state of the link
in high mobility scenarios. We take this approach in the numerical results in
Section VII.

5We remark that this does not lead to capacity wastage for the following
reasons. 1) The fraction of window used by this one slot is 1

w(t)
in the worst

case, and w(t) keeps increasing as the number of flow increases. 2) Once a
new flow arrives at the gNB, this extra slot is not booked.
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backhaul link in the network, and one special slot for each
gNB for FUTURE links. Ucur

n is set of existing UE requests
at gNB n. We note that {(n, u) : u ∈ Ucur

n } is the set of access
links of n. Unew

n is the set of new UE requests, awaiting their
initial reservation. Once the initial reservation is completed,
a UE request is moved from Unew

n to Ucur
n in lines 14-15 in

NEW ARRIVAL RESERVATION procedure. Naturally, a UE
request arrival is added to Unew

n in line 18 and a departure is
removed from Ucur

n in line 19.

Lines 12-16 show the update process in the DSR algorithm,
which happens during the block just like in Algorithm 1.

Algorithm 2 Procedures for DSR Algorithm
1: procedure LOAD UPDATE(n,ℓ) // n is the transmitter of link ℓ.
2: if ℓ is a backhaul link then
3: τℓ := ⌈ 1

Rℓ

∑
u:ℓ∈Pu

min(qun, τs)⌉
4: τℓ ← max(1, τℓ)
5: else if ℓ is an access link then
6: τℓ := ⌈min(τs,q

u
n)

Rℓ
⌉, where u is the receiver of ℓ.

7: end if
8: end procedure
9: procedure NEW ARRIVAL RESERVATION(n)

10: for u ∈ Unew
n do

11: if qun > 0 then
12: Run LOAD UPDATE(n,(n, u)) to compute

τ(n,u).
13: Reserve τ(n,u) slots for link (n, u) using the

update rule of Algorithm 1.
14: Unew

n ← Unew
n − {u}.

15: Ucur
n ← Ucur

n

⋃
{u}.

16: end if
17: end for
18: end procedure
19: procedure RESERVATION UPDATE(n,ℓ) // Here, either

ℓ is a link of gNB n, or in the special case with no UEs are at gNB n,
argument ℓ can be FUTURE, where a single slot will be reserved which
will be used for reserving slots for future UE request arrivals at gNB n.

20: if ℓ is FUTURE then
21: Run NEW ARRIVAL RESERVATION(n).
22: if Ucur

n = ϕ then
23: Reserve one slot, which does not conflict with

backhaul links {ℓn}
⋃

m∈B:p(m)=n{ℓm}. // This slot will be
used to reserve slots for future UE arrivals at n.

24: end if
25: else if ℓ is an access link then
26: Run LOAD UPDATE(n,ℓ).
27: Reserve τℓ slots for link ℓ according to the update

rule of Algorithm 1.
28: Run NEW ARRIVAL RESERVATION(n).
29: else if ℓ is a backhaul link then
30: Run LOAD UPDATE(n,ℓ).
31: Reserve τℓ slots for ℓ according to the update rule

of Algorithm 1.
32: end if
33: end procedure

Algorithm 3 Dynamic Slot Reservation (DSR) Algorithm
1: U cur

n = ϕ,Unew
n = ϕ for each n ∈ B. // Initialization

2: Consider any arbitrary ordering of gNBs in B as {bi}Bi=1.
3: for i = 1 to B do
4: if bi ̸= r then
5: Run RESERVATION UPDATE(p(bi),ℓbi ).
6: end if
7: Run RESERVATION UPDATE(bi,FUTURE).
8: end for
9: t = 1.

10: while t ≥ 1 do // Main Algorithm
11: for n ∈ B do
12: if t is the ending slot of a link ℓ of gNB n. then
13: Run RESERVATION UPDATE(n,ℓ).
14: else if t is a slot reserved for FUTURE links then
15: Run RESERVATION UPDATE(n,FUTURE).
16: end if
17: Let An(t) be the set of new UE requests which

arrived during slot t, and Dn(t) be the set of the UE
requests which departed during slot t.

18: Unew
n ← Unew

n

⋃
An(t).

19: Ucur
n ← Ucur

n −Dn(t).
20: end for
21: t← t+ 1.
22: end while

VII. NUMERICAL RESULTS

In this section, we compare the performance of the pro-
posed DSR algorithm with a NUM based congestion control
algorithm, joint-MWM algorithm from [1], [2]. In each slot,
the joint-MWM algorithm updates the flow rates based on the
link costs in that slot. In each slot, the max-weight schedule
of links is computed and used for transmission. The link costs
are treated as queue sizes and are updated according to a
queuing rule. The flow rates under the joint-MWM algorithm
was shown in [1] to converge to the NUM solution for a fixed
set of flows .

The implementation of joint-MWM algorithm involves find-
ing the max-weight schedule in each slot. In contrast, our
algorithm only requires local message passing, only once per
window for most links. As mentioned in the introduction,
finding the max-weight schedule involves message passing to
the root and back. Hence for joint-MWM, the computational
complexity is linear in the number of links, and the message
passing overhead is linear in the number of gNBs [6]. In
contrast for DSR, computational complexity (which is for
slot bookings), and the message passing overhead at a gNB,
is linear with the number of neighbors (since a gNB only
communicates with its neighboring gNBs).

We consider the IAB setup shown in Figure. 3. Here, gNB
1 is the IAB donor, and the other gNBs 2− 5 are IAB nodes
with the IAB topology shown in Figure. 3. The parameters for
simulation are chosen as follows. For the gNB-gNB backhaul
links, the distance is uniformly chosen between 100 m and
600 m. For the randomly chosen realization, the backhaul
link rate vector [Rℓi ]

5
i=2 is [13.19, 8.92, 11.83, 12.58] Gbps.
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gNB 3
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Network

Fig. 3. Simulated IAB Network Topology

At each gNB, the flow (UE request) arrival process is an
i.i.d Poisson process with rate ν (in requests/sec). The size
of each arriving flow request is i.i.d exponential with mean 50
Mb (rounded up to an integral number of packets). The gNB-
UE distance for each arriving UE request is chosen uniformly
randomly between 0 and 300m. Other parameters are given in
the following Table I.

We consider two scenarios. In the first scenario, Sc. 1, each
access link is in a LoS state independently with probability 0.9,
and in a NLoS state otherwise. In a given state, the path-loss
is decided independently according to the 3GPP Urban Micro
channel model. Following [25], we consider Rician fading for
access links with K factor as 13 dB for LoS links and 6 dB for
NLoS links. The access link rate is taken to be the Shannon
rate and is fixed until the flow’s departure.

For the second scenario, Sc. 2, we model the rate for
an access link as a time varying process as follows. The
time spent in the LoS (and the NLoS) state is distributed
as an i.i.d geometric random variable with mean 500 (and
500/9) slots respectively. The mean length of time in the
LoS state is therefore 62.5 msec, and the mean time in the
NLoS state is 6.9 msec (from the parameters in Table I). The
stationary probability of an access link being in LoS state is
0.9. After each state change, the access link rate is realized
independently, as described in the first scenario. Thus, the
channel alternates between a good (LoS) and bad (NLoS)
state, similar to a Gilbert-Elliot process, but with a randomly
selected rate due to Rician fading.

The DSR algorithm was designed for the case that link rates
of flows do not change, as in Sc. 1. If UEs are pedestrians, the
state changes between LoS and NLoS will be on the order of
seconds, during which time most flows will complete. Sc. 1
is therefore applicable when UEs are moving at pedestrian
speeds. The rate of change of link state is much higher in
Sc. 2, so Sc. 2 is applicable to UEs moving at higher speeds.

In Sc. 2, we extend the DSR algorithm enabling it to adapt
to time varying access link rates. During a load update for an
access link l, the new τl is calculated using the access-link
rate in the slot in which the booking is made. If the access
link rate changes during a transmission block, the number of
bits transmitted changes accordingly. At the next load update,
the new τl will be calculated using the access-link rate at the
time of the new booking, and so on.

A. Results

End-to-end delay for a flow is the amount of time from its
arrival till its departure. We compare the average end-to-end

TABLE I
SIMULATION PARAMETERS

Parameter Value
Carrier frequency 23 GHz

Bandwidth 1 GHz
Propagation model 3GPP Urban Micro

Slot duration 125 µs
Packet size 100 Kb

τs 200
Noise spectral density -174 dBm/Hz
gNB transmit power 30 dBm
Beamforming gain 30 dB (for access), 40 dB (for backhaul)

Noise figure 5 dB (for gNB), 7 dB (for UE)

delays for multi-hop flows under the DSR and joint-MWM
algorithms for various arrival rates ν.

Fig. 4 presents the results for 1-hop flows, i.e. flows for
UEs connected to gNB 1. The main observation from Fig. 4
is that Joint-MWM has the lowest delays for these flows.

Observe also that channel variation (i.e. Sc. 2) decreases
the end-to-end delay for both DSR and Joint-MWM. Multi-
user diversity is a factor behind the delay improvement for
joint-MWM, since scheduling decisions are made every slot.6

Channel variation also decreases the delays for the DSR
algorithm. In the DSR algorithm, more slots are reserved by
links with smaller rates, and hence a state change from NLoS
to LoS (which occurs in Sc. 2) reduces resource usage.

The benefits of channel variation are also apparent in
Figs. 5-6 below for all the schemes.

Fig. 5 presents the results for 2-hop flows, i.e. flows for UEs
connected to gNB 2 or 3. In Sc. 1, DSR has lower delay than
Joint-MWM for lower arrival rates, and the trend reverses for
high arrival rates. The same phenomenon occurs in Sc. 2.

Fig. 6 presents the results for 3-hop flows, i.e. flows of UEs
connected to gNBs 4 or 5. Here, joint-MWM has the highest
delays in both scenarios. It can be observed that Joint-MWM
favours flows with less hops, in terms of end-to-end delay. In
contrast, the DSR algorithm provides a more uniform end-to-
end delay across the flows.

In Fig. 7, we directly compare end-to-end delays of 1-hop,
2-hop and 3-hop flows when the arrival rate is moderate (ν =
29.5) and when the arrival rate is high (ν = 38.5). This is
done for all schemes in both Scenarios. Fig. 7 shows that the
uniform flow rate allocation under DSR leads to more uniform
delays across all flows (from 1-hop flows to 3-hop flows), as
compared to Joint-MWM. This feature of DSR makes it very
well suited for IAB networks.

The DSR algorithm exhibits similar behaviour in terms
of achieved stability region, (i.e. arrival rates such that the
expected delays are bounded), as the joint-MWM algorithm.
In [1], [2], Joint-MWM is was shown to be stable (i.e. leads to
bounded expected delays) for all feasible arrival rates for the
case of fixed link rates (e.g. Sc. 1). We do not have a proof
that the DSR algorithm is similarly always stable in Sc. 1, nor
for any of the algorithms when the link rates are time varying.
However in the following section, we will prove the stability

6This factor is also one reason (amongst several) as to why such an
algorithm is inherently impractical across a multi-hop network, especially
when the channel variation is fast.
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Fig. 4. Average end-to-end delays for flows accessing via gNB 1

Fig. 5. Average end-to-end delays for flows accessing via gNBs 2 or 3

Fig. 6. Average end-to-end delays for flows accessing via gNBs 4 or 5

of a continuous-time abstraction of the DSR algorithm for the
case of fixed access link rates.

VIII. STABILITY OF DYNAMIC FLOW CONTROL

In this section, we will show the stability of a continuous-
time abstraction of the DSR algorithm. Under the continuous-
time abstraction, we assume that each flow instantaneously re-
ceives a rate of (maxb∈B Fb(N ))−1 bits/slot when the network

(a) ν = 29.5 requests/s (b) ν = 38.5 requests/s

Fig. 7. Comparison of delays across flows, as well as across schemes.

enters state N , i.e. we ignore the transient period required for
convergence of slot reservation. Secondly, we assume that the
state changes happen in continuous-time, i.e. not just at the
slot boundaries. In this section, a slot is simply an arbitrary
unit of time. We note that the assumptions of continuous time
abstraction are justified under a time-scale separation between
the slot sizes and flow durations, i.e. when the file sizes are
large and the slot sizes are small.

In this section, we consider a continuous time model for
state process {N (tc)}tc∈R+

. Here, tc ∈ R+ represents the
continuous time. N (k)

b (tc) denote the number of UE requests
of k-th class at a gNB b ∈ B at time tc, and N (tc) :=

[N
(k)
b (tc)]b∈B,k∈[1,K] denote the network state, at time tc.
First, we define what we mean by stationary flow con-

trol policies in Section VIII-A and characterize the stability
region. We then propose a particular flow control policy in
Section VIII-B, which is intended as an abstraction of the
discrete-time DSR algorithm, where the flow rates are set
by (10),(11), and determined by the window sizes given in
Theorem 4, but here such rates are realized instantaneously.
We will show that this flow control algorithm achieves every
vector in the stability region.

A. Stationary Flow Control Policies

Fixing a network state N ∈ Z|B|×K
+ , let GN denote the

network graph, UN the set of UE requests, and LN be the set
of links in GN , when the network is in the state N .

A stationary flow control policy decides the flow rate vector
αN := [αN

u ]u∈UN when the network is in state N . Let γN :=
[γN

l ]l∈LN be the utilization vector corresponding to α, where
γN
l :=

∑
u:l∈Pu

αN
u /Rl, and Pu is the set of links in the path

from u to r. The minimum resource clearing problem for this
setup can be formulated as LP (3) with L replaced by LN . If
the optimal value of the LP is less than or equal to 1, then it is
possible to satisfy the flow rates αN by time-sharing among
the feasible sets of the network. Otherwise, from Theorem 1,
αN is infeasible.

From Theorem 3, the optimal value of the LP equals
maxb∈B γN

ℓb
+
∑

l∈LN
b
γN
l , where LN

b ⊆ LN is the set of
downstream links of b ∈ B. Hence, for feasibility, the flow
rate vector αN must satisfy the constraints (12)

γN
ℓb

+
∑
l∈LN

b

γN
l ≤ 1,∀ b ∈ B (12)

Let ΛN be the set of all flow rate vectors αN such that
(12) holds.

Definition 4. A stationary flow control policy θ is a mapping
from Z|B|×K

+ to R∞
+ such that

αN = θ(N ) ∈ ΛN , ∀N ∈ Z|B|×K
+ . (13)

i.e, each state N ∈ Z|B|×K
+ is mapped to a feasible rate vector

αN ∈ ΛN .

For the sake of brevity, we use the notation (·)(tc) to mean
(·)N (tc) in the following. Hence, a stationary flow control
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policy determines the flow rates α(tc), (and hence γ(tc)) at
time tc, based on the network state N (tc), such that

γlb(tc) +
∑

l∈Lb(tc)

γl(tc) ≤ 1,∀ b ∈ B (14)

As mentioned earlier, we assume that the flow rates set
by the flow control policy are instantaneously realized by an
underlying resource allocation policy which time-shares over
the feasible sets, and hence the flow of each active UE request
u is served at a rate of αu(tc) bits/sec. Note that the network
state process {N (tc)}tc∈R+

is a Markov process, under a
stationary flow control policy.

Recall that ν
(k)
b (requests/slot) is the rate of UE request

arrivals of class k at gNB b. Let νℓb be the aggregate rate of
UE request arrivals, that use backhaul link ℓb, defined as

νℓb :=
∑

b′∈B−{r}

I(ℓb ∈ Pb′)

K∑
k=1

ν
(k)
b′ (15)

where Pb′ is the set of links in the path from b′ ∈ B − r to
root r, and I(·) is the indicator function.

Theorem 5. The Markov process {N (tc)}tc∈R+
is not er-

godic, under any stationary flow control policy, if

D

 K∑
k=1

ν
(k)
b

Ra
k

+
∑

b′∈B:p(b′)=b

νℓb′
Rℓb′

+
νℓb
Rℓb

 > 1 (16)

for some b ∈ B

Proof. See Proof of Theorem 5 in Appendix C.

B. Proposed flow control policy and stability

In this section, we consider the stability region of the flow
control policy (first described in section VI-A) which provides
a rate of at least (maxb∈B Fb(N ))−1 bits/slot for each flow in
the network, when in state N .

Let Nmax
B := maxb∈B Fb(N ). Under the continuous-time

algorithm, each flow rate is set to be exactly 1/Nmax
B bits per

slot. The state evolution equations for this setup are given as

N
(k)
b (tc) = N

(k)
b (0) + P

ν
(k)
b

(tc)− P1/D

(∫ tc

0

N
(k)
b (s)

Nmax
B (s)

ds

)
for k = 1, . . . ,K, where Pλ(.) represents the Poisson process
with parameter λ.

The Markov process N (tc) is ergodic, under the proposed
flow control policy for every vector ν := [ν

(k)
b ]b∈B,k∈[1:K]

within the stability region, as shown in Theorem 6.

Theorem 6. The Markov process {N (tc)}tc∈R+
is ergodic,

under the proposed flow control policy, if

D

 K∑
k=1

ν
(k)
b

Ra
i

+
∑

b′∈B:p(b′)=b

νℓb′
Rℓb′

+
νℓb
Rℓb

 < 1 (17)

for each b ∈ B

Proof. See Proof of Theorem 6 in Appendix C.

IX. QOS GUARANTEES UNDER THE SLOT RESERVATION
FRAMEWORK

In the previous section, we have shown how the DSR
algorithm can be used to adapt flow rates and achieve stability.
However, in applications with inelastic traffic, there can be
stringent QoS requirements on flow rate, latency etc. In this
section, we will provide a slot reservation framework to
provide QoS guarantees, by proposing distributed admission
control policies which can guarantee rate and latency.

The key idea is the following. As shown in Theorem 4
in section VI-A, the steady-state flow rate is a function of
window-size. We use admission control to limit the window-
size in order to meet QoS requirements.

We start by generalizing the criterion for choosing the load
vector τ , which allows for different QoS requirements across
flows. We generalize to a weighted version of τl’s, which
provides different rates for different classes k = 1, . . . ,K of
flows. A flow of class k has an access link rate Ra

k (as before)
and a weight wk > 0. For an access link of flow u of class k
at a gNB b ∈ B, we define

τ(b,u) =
wk

Ra
k

× τs bits/slot (18)

and for a backhaul link, we define

τℓb =

∑K
k=1 N

(k)
ℓb

wk

Rℓb

× τs bit/slot (19)

where, N (k)
ℓb

is the number of active flows of class k using
link ℓb.

Using same arguments as in Theorem 4, we obtain the
following equivalent Theorem about convergent window size
and flow rates.

Theorem 7. For a fixed state N ∈ Z|B|×K
+ , implementing

Algorithm 1 with the τℓ values from (18), (19), leads to the
following steady state conditions.

1) The converged window size is given by τs maxb∈B Gb(N )
slots, where

Gb(N ) :=

K∑
k=1

N
(k)
ℓb

wk

Rℓb

+

K∑
k=1

N
(k)
b wk

Ra
k

+
∑

b′:p(b′)=b

K∑
k=1

N
(k)
ℓb′

wk

Rℓb′
(20)

2) Each flow of class k receives a flow-rate of at least
wk (maxb∈B Gb(N ))

−1 bits/slot.

A. Rate guarantee via distributed admission control

Consider a scenario where qk bits/slot is the flow-rate
requirement for a class k ∈ [1 : K], i.e. inelastic traffic. This
rate requirement can be guaranteed under the slot reservation
framework by incorporating admission control as follows.

Suppose the current network state is N , and the rate
requirement is satisfied for all the existing flows. Consider
a new UE request of class k ∈ [1 : K] arriving at gNB b. Let
{bi}Ii=1 denote the set of gNBs in the path from b to r, such
that b1 = p(b), bi+1 = p(bi) for i ∈ [1 : I − 1]. Let b0 := b,
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and also note that bI = r. We propose that the new UE is
admitted into the network if and only if (21)-(22) hold.

Gb(N ) +
wk

Ra
k

+
wk

Rℓb

≤ min
k′∈[1,K]

wk′

qk′
(21)

Gbi(N ) +
wk

Rℓbi

+
wk

Rℓbi−1

≤ min
k′∈[1,K]

wk′

qk′
∀i ∈ [1, I − 1]

GbI (N ) +
wk

RℓbI−1

≤ min
k′∈[1,K]

wk′

qk′
(22)

Suppose the new UE request is admitted. It will add to
number of flows Nk

b at gNB b and to the number of flows
on backhaul links ℓbi , N

(k)
ℓbi

, for i ∈ [1 : I − 1]. Hence, this
admission will change the value of Gbi(·) at each gNB bi for
i ∈ [0 : I]. The LHS of (21)-(22) are the values of {Gbi(.)}Ii=0

if the UE is admitted. Since Gb′(·) is not affected for the rest
of the gNBs b′ ∈ B−{bi}Ii=0, the rate guarantee follows from
the second result (i.e. 2)) in Theorem 7.

For admission, the new UE request requires that the con-
ditions (21)-(22) hold at gNBs in the path from r to b. Note
that Gbi(N ) can be evaluated locally at the gNB bi, and a
bit xi ∈ {0, 1} can be set to 1 if the condition holds at the
gNB and 0 otherwise. For deciding admission, a 1 bit message
x can be passed from b to r. At each gNB bi, logical AND
operation ∧, is used to send message x ∧ xi to parent bi+1,
resulting in a 0 being delivered at the root gNB r if any of the
conditions do not hold. Recall that in 3GPP IAB, the UE initial
access procedure involves establishing such a forwarding route
from r to b, and the message passing can be included in this
procedure.

We also note that it is sensible to match the weights to
requirements, i.e. choose wk = qk for each k = 1, . . . ,K,
although it is not necessary.

B. Latency guarantee via distributed admission control

The key idea in the previous Section IX-A is to achieve
rate guarantees by limiting the window-size via admission
control. This is possible since the flow rates are a function
of the converged window size. We take the same approach to
provide end-to-end packet latency guarantees in the following.

For each UE request at gNB b, in each window, there is
a transfer of exactly τs bits on each hop in the path from r
to the UE. Hence, the end-to-end latency is I + 1 times the
window size, i.e. (I + 1)maxb∈B Gb(N ). It is therefore clear
that the admission control in the previous section can also be
used to provide latency guarantees.

C. Guarantees under changing access link rates

In previous sections, we have mainly focused on a setup
where the access rate of a UE request is fixed, from its arrival
until its departure. However, on a long enough time scale, the
mmWave link rates change due to fading and blocking7. The
distributed admission control setup can be adapted for varying
link rates, by allowing service interruptions, i.e. by dropping
UE requests with bad link rates.

7See also the time varying model considered in Section VII

As earlier, suppose that the current network state is N , and
the minimum rate requirement is satisfied for all the existing
UE requests. Here, we consider that all flows have the same
weight 1 as in the DSR algorithm. Hence, a class k is only
associated with a rate Ra

k, and a change of class is used to
represent a change in access link rate.

1) Change in UE rate: Suppose an existing flow u at
gNB b, changes from class k to class j, where Ra

j > Ra
k,

i.e. improved rate. In this case, the UE request stays in the
network, but the τ(b,u) value is calculated with new access
rate Ra

j , as τs/R
a
j .

Suppose an existing UE request at gNB b, changes from a
class k to class j, where Ra

j < Ra
k. In this case, the UE request

is only retained if (23) holds. Otherwise, the UE request is
dropped by gNB b.

Gb(N )− 1

Ra
k

+
1

Ra
j

≤ 1

qj
(23)

We note that in this case only Gb(·) is affected, and not Gbi(·)
for i ∈ [1 : I], in contrast to the previous case. This is because
the number of flows through the backhaul links in the path
from r to b remains unchanged.

2) UE arrival with a good rate: Suppose a new UE request
of class k ∈ [1 : K] arrives at gNB b. The UE request is
admitted if (21)-(22) holds as explained in section IX-A.

Suppose (21)-(22) does not hold. In this case, the new
UE request can be still admitted by dropping an existing UE
request with a smaller rate than Rk, and QoS is still maintained
by (23). We propose that an existing UE request with smallest
rate is dropped by gNB b.

X. CONCLUSIONS AND FUTURE WORK

In the paper, we have provided a new distributed slot
reservation framework for joint flow control and scheduling in
mmWave IAB networks. We have shown it can be applied 1)
in a static setup using our SSR algorithm, where it converges
fast to the optimal solution, 2) in a dynamic setup with
flow arrivals, using our DSR algorithm, which has a uniform
delay performance across flows and also stability, and 3) for
admission control to provide QoS guarantees in a dynamic
setup with flow arrivals and changing link rates.

For the SSR algorithm, we have restricted to the tree
topology of IAB networks and used its structure to derive the
optimality result, Theorem 3. The other convergence result,
Theorem 2, does not rely on the tree topology. Hence, in any
network, the SSR algorithm always converges to a fixed point,
even when the topology is not a tree, but the fixed point is not
an optimal solution of LP (3) for all topologies. The question
of clearing-time optimality for other topologies is left open.
For future work it may also be important to consider gNBs
that are capable of creating multiple beams.

In the dynamic model for DSR, we have assumed that long
lasting blocking of access links does not happen on the time-
scale of slot reservation and that the topology is fixed. Future
work can consider topology reconfiguration due to blocking,
in which blocking of access links causes UE requests to
migrate to different gNBs. In such scenarios, the arrival and
departure processes at different gNBs will be correlated, which
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can affect the overall capacity region. It is also important in
future work to consider channel models in which the data
rates are time varying, due to blocking, and other channel
impairments. We have provided illustrative results for DSR for
such a model (Scenario 2) in Section VII, but designing an
optimal slot reservation algorithm for dynamic rates remains
an open problem.

APPENDIX A: PROOFS OF THEOREM 1 AND THEOREM 2
Proof of Theorem 1. Suppose that f∗ > 1. Let F denote the
set of all the feasible vectors {fS}S∈S ∈ R|S|

+ such that∑
S∈S fS ≤ 1. Since f∗ > 1, it follows that for any {fS} ∈ F

there exists a link l ∈ L such that γl −
∑

S:l∈S fS > 0. Let

δ := inf
{fS}∈F

max
l∈L

(γl −
∑
S:l∈S

fS) (24)

Consider any T ≥ 1. Let FT
S be the total number of slots

allocated to a feasible set S ∈ S , until time T , under an
allocation policy. Define the time fraction allocated to feasible
set S by fT

S := FT
S /T and by feasibility we have that∑

S∈S fT
S ≤ 1, hence {fT

S }S∈S ∈ F .
Note that 1

T

∑T
t=0 Ul(t) =

∑
S:l∈S fT

S . Hence from (24),
there exists l ∈ L such that 1

T

∑T
t=0 Ul(t) ≤ γl − δ for each

T ≥ 1. Hence, α is not achievable if f∗ > 1.

Proof of Theorem 2. We show that for each l ∈ L, there are
at least τl allocated slots in the interval [t−w(t) + 2 : t+ 1],
which is enough to prove the theorem.

We categorize the links in L into mutually exclusive (and
exhaustive) sets L1,L2,L3,1,L3,2. L1 is the set of links l such
that there are at least τl + 1 allocated slots in the interval
[t− w(t) + 1 : t]. L2 is the set of links l for which there are
exactly τl slots allocated to l in the interval [t−w(t) + 1 : t]
and for which t−w(t)+1 is not an allocated slot of l. L3,1 is
the set of links l such that there are exactly τl slots allocated
to l in the interval [t−w(t)+1 : t], and both slot t−w(t)+1
and slot t are slots allocated to link l. L3,2 is the set of links l
such that there are exactly τl slots allocated to l in the interval
[t − w(t) + 1 : t], and slot t − w(t) + 1 is allocated to l but
slot t is not allocated to link l.

It is clear that at least τl slots are allocated to link l in
the interval [t − w(t) + 2 : t + 1] for any link l ∈ L1. For a
link l ∈ L2, there are exactly τl allocated slots in the interval
[t − w(t) + 2 : t], and hence at least τl allocated slots in the
interval [t− w(t) + 2 : t+ 1] also. Now we consider the two
other sets of links.

Case- l ∈ L3,1: For a link l ∈ L3,1, we consider two subcases:
1) t is an ending slot for link l, 2) t is not an ending slot for
link l.

Subcase 1): In this subcase, t is an ending slot for l, so the
interval of slots [t− τl + 1 : t] is allocated to l. Since l is in
L3,1, slot t−w(t) + 1 is allocated to l. Since exactly τl slots
are allocated to l in [t−w(t)+1 : t] it follows that w(t) = τl.
But any other link k ∈ L − {l} has all its required τk slots
allocated in [t−w(t)+1 : t] so it follows that in this subcase,
l ̸∈ I(k),∀k ∈ L− {l} (i.e. link l does not interfere with any
other link). Hence, after ending slot t, link l will book slots

[t+1 : t+ τl]. Thus, there are τl allocated slots in the interval
[t− w(t) + 2 : t+ 1] in this subcase.

Subcase 2): Since slots are allocated as a contiguous block,
and since slot t, occupied by l, is not an ending slot for
l (in this subcase), it follows that t + 1 is also allocated
to l. Therefore, there are τl allocated slots in the interval
[t− w(t) + 2 : t+ 1] in this subcase.

Case- l ∈ L3,2: Since there are exactly τl allocated slots
in the interval [t − w(t) + 1 : t], it follows that there is one
ending slot for l in the interval. Let t′ denote the ending slot
for l in the interval [t−w(t)+1 : t]. We note that t′ ̸= t since
by definition of L3,2, slot t is not allocated to link l.

Suppose first that all of the allocated slots to link l from the
update at slot t′ lie inside the interval [t− w(t) + 1 : t]. This
is impossible, for if so, there are the τl slots from the update
at slot t′, plus slot t′ itself, allocated to l, all in the interval
[t−w(t)+1 : t]. This contradicts the fact that there are exactly
τl slots allocated to the link in the interval [t− w(t) + 1 : t].

Suppose next that some of the τl slots from the update at t′

lie outside the interval [t−w(t)+ 1 : t], and others lie inside.
Due to the contiguity of slot allocation (in contiguous blocks)
this implies slot t is occupied by l, which contradicts the fact
that l does not occupy slot t (from the definition of L3,2).

We conclude that all the allocated slots to link l from the
update at t′ lie strictly outside the interval [t − w(t) + 1 : t].
Thus, the slots allocated to link l in the interval [t−w(t)+1 : t]
all lie in the sub-interval [t−w(t) + 1 : t−w(t) + τl] (which
includes t′ = t− w(t) + τl) in this case.

Note that for each k ∈ I(l), there are at least τk allocated
slots in the interval [t − w(t) + 1 : t]. Since the slots [t −
w(t) + 1 : t− w(t) + τl] are occupied by l, there are at least
τk allocated slots in the interval [t − w(t) + τl + 1 : t] for
each k ∈ I(l). It follows that the occupied slots (by k ∈ I(l))
during the update for l at time t′ = t−w(t) + τl must satisfy⋃

k∈I(l) Tk(t
′) = [t− w(t) + τl + 1 : t].

It follows that the immediate free slot for link l during
update at ending slot t′ must be t + 1. Hence, during this
update, l occupies the slots [t + 1 : t + τl − 1]. Hence, it
follows that for each l ∈ L3,2, there are exactly τl slots in the
interval [t− w(t) + 2 : t+ 1]. This concludes the proof.

APPENDIX B: PROOF OF THEOREM 3

In this section, we describe several key properties of the
SSR algorithm, and provide the proof of Theorem 3. First, we
introduce the necessary notation and prove preliminary results
which are required.

Definition 5. A clique set Cb, for a gNB b, is the set of links
connected to b in G, i.e. Cb := {lb}

⋃
Lb.

Lemma 1 is an important step in the proof of Theorem 3.
It concerns the optimal value of the linear program in (3).

Lemma 1. The optimal value of LP (3), f∗ ≥
maxb∈B

∑
l∈Cb

γl.

Proof. Consider a b ∈ B. Note that each l ∈ Cb conflicts with
other links in Cb − {l}. Hence, each feasible set S ∈ S can
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contain at most one link in Cb. Let Sl denote the feasible sets
which contain a link l ∈ Cb. We obtain that∑

S∈S
f∗
S ≥

∑
l∈Cb

∑
S∈Sl

f∗
S (25)

From the constraints of LP (3), it is clear that
∑

S∈Sl
f∗
S ≥ γl

for each l ∈ Cb. The Lemma is now immediate from (25).

We now introduce the necessary definitions and the pre-
liminary results concerning the SSR algorithm required in the
proof of Theorem 3. We define ϵl(t) to be the earliest ending
slot of l which is greater than or equal to t as follows.

ϵl(t) := min
n∈N
{snl + τl − 1 : snl + τl − 1 ≥ t} (26)

For t > s1l + τl − 1, we define βl(t), the latest ending slot
of l which is less than t as follows.

βl(t) := max{k < t : ϵl(k) = k} (27)

We define the inter-update gap of a link l ∈ L as

gl(t) := ϵl(t)− βl(t) (28)

for t > s1l + τl − 1. We present the following lemma which
provides a relation between the window size w(t) (defined in
(6)) and the inter-update gaps.

Lemma 2. At any t ≥ maxl∈L s1l + τl − 1,

w(t) ≤ max
l∈L

gl(t) (29)

Proof. Consider a l ∈ L. Let n ∈ N be such that t lies in the
interval [snl + τl : s

n+1
l + τl − 1]. Then βl(t) = snl + τl − 1,

ϵl(t) = sn+1
l + τl − 1 and gl(t) = sn+1

l − snl .
If t < sn+1

l then t− gl(t) + 1 = t− sn+1
l + snl + 1 ≤ snl .

So in this case [snl : snl + τl − 1] is entirely contained in the
interval [t−gl(t)+1 : t], and [sn+1

l : sn+1
l +τl−1] is entirely

outside the same interval. It follows that link l has exactly τl
allocated slots in the interval [t− gl(t) + 1 : t].

If sn+1
l ≤ t ≤ sn+1

l + τl − 1 then

snl + 1 ≤ t− gl(t) + 1 ≤ snl + τl.

In this case, link l is allocated all the slots between slot t −
gl(t)+1 and slot snl +τl−1. This is a total of τl−1+sn+1

l −t
slots allocated to l in this interval. In this case link l is also
allocated the t−sn+1

l +1 slots between sn+1
l and t. Adding the

two parts together, there is a total of exactly τl slots allocated
to l in the interval [t− gl(t) + 1 : t].

It follows that each link l has at least τl allocated slots in the
interval [t−maxl′∈L gl′(t) + 1 : t]. The Lemma is immediate
from the definition of window size w(t).

Definition 6. A link l is said to have a large gap at time t, if

gl(t) > max
b∈B

∑
l∈Cb

τl =: τmax
B (30)

The following Lemma 3 regarding the ending slots of
neighboring links is an intermediate lemma required in the
proof of the following Lemma 4.

Lemma 3. Suppose that t is an ending slot of a link l =
(n0,m0) such that t ≥ s1l + τl. Then exactly one of the
following conditions must hold

1) t− τl is an ending slot for link l.
2) t−τl is an ending slot for a link k ∈ I(l). Further, k is an

element of exactly one of the sets Cn0
−{l}, Cm0

−{l}.

Proof of Lemma 3. Let the ending slot t be sn+1
l + τl−1, i.e.

ending slot belonging to n + 1-th allocation block of l. Let
t′ = βl(t) = snl + τl − 1 be the previous ending slot. Note
that sn+1

l ≥ snl + τl, since slots [snl : snl + τl − 1] is the n-th
allocation block of l. We consider the following two cases.
Case 1 - sn+1

l = snl + τl: i.e, slot t′ + 1 is free during the
update at t′. In this case, t′ = t− τl is an ending slot for link
l. Statement 1) of Lemma 3 holds in this case.

Case 2 - sn+1
l > snl + τl: In this case, during the update at

t′, sn+1
l − 1 is a slot occupied by a link (say k) in I(l) (see

line 1 of Algorithm 1). Note that link k occupies slot t− τl =
sn+1
l −1, but not t−τl+1 = sn+1

l (since it is occupied by link
l). Hence, t− τl is an ending slot of link k. Finally, note that
I(l) = Cn0−{l}

⋃
Cm0−{l} and Cn0−{l}

⋂
Cm0−{l} = ϕ.

Statement 2) of Lemma 3 holds in this case.

The following Lemma 4 is the key basis for inductive step
in the proof of Lemma 5 below.

Lemma 4. Suppose t is an ending slot of a link l ∈ L such
that gl(t) > τmax

B and, for which t ≥ s1l + τl and t − τl ≥
maxl′∈I(l) s

1
l′ + τl′ . Then there exists k ∈ I(l) such that

a) t− τl is an ending slot of k (and hence not of link l).
b) gk(t− τl) > τmax

B .
c) t− τl − τk is not an ending slot of l.
d) ∃j ∈ I(k)− {l} : t− τl − τk is an ending slot of j.

Proof of Lemma 4. It follows from Lemma 3 that t− τl is an
ending slot for either link l or for some link k ∈ I(l). If t−τl is
an ending slot for link l, then gl(t) = t−(t−τl) = τl ≤ τmax

B ,
which is a contradiction (since it is given that gl(t) > τmax

B ).
Hence, t− τl is an ending slot for some link k ∈ I(l), i.e. a).

Let t′ = βl(t), i.e. t′ is the latest ending slot of l before
t. We have established that during the update at t′, t − τl is
already allocated to some link k ∈ I(l). Let I∗ ⊆ I(l) denote
the set of all the links in I(l) that are occupying the slot t−τl.
In the following, we will show the existence of a link k ∈ I∗

that satisfies properties b), c) & d) of Lemma 4. We note that
a) follows trivially since t− τl is an ending slot for all links
l′ ∈ I∗. The existence of such a link k ∈ I∗ follows from
Claim A and Claim B below.

Claim (Claim A). For each link k ∈ I∗, t − τl − τk is not
an ending slot of link l, but is an ending slot of a link j ∈
{k}

⋃
I(k)− {l}.

Proof of Claim A. For each k ∈ I∗, applying Lemma 3 at time
t− τl, we have that t− τl − τk is an ending slot for a link in
the set {k}

⋃
I(k). Note that l ∈ I(k) for each k ∈ I∗. Now

assume that there exists a link k ∈ I∗, such that t− τl− τk is
an ending slot of link l. It then follows that

gl(t) ≤ t− (t− τl − τk) = τl + τk ≤ τmax
B
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which is a contradiction since it is given that gl(t) > τmax
B .

Hence, t− τl − τk is not an ending slot of l for any k ∈ I∗.
This completes the proof of Claim A.

We now obtain the following Claim B, which will then
be used to show that there exists a link k ∈ I∗ satisfying
properties b) and d) of Lemma 4. c) is immediate from the
above Claim A.

Claim (Claim B). There exists a link k ∈ I∗ such that there
is no ending slot of k in [t′ + 1 : t− τl − τk].

Proof of Claim B: Suppose not. Assume all links k ∈ I∗ have
at least one ending slot in the interval [t′ + 1 : t − τl − τk].
Hence, each link k ∈ I∗ is allocated the slot t − τl during
an update in interval [t′ + 1 : t − τl − τk], and not before.
Therefore, during link l’s update at time t′, t− τl ̸∈ Tk(t

′) for
any k ∈ I(l), i.e. t− τl has not been allocated to any link in
I(l) at time t′. No slots later than t− τl have been allocated
either. Thus, a block of slots including slot t − τl would be
allocated to link l at time t′. This is a contradiction, since it is
already established that t−τl is allocated to a link k ∈ I(l) (in
the first paragraph of the proof of this lemma). This completes
the proof of Claim B.

Since [t′ − τl + 1 : t′] are occupied by l, the latest ending
slot of the link k (the one in the statement of Claim B), before
the ending slot t− τl, is βk(t− τl) ≤ t′ − τl. Therefore,

gk(t− τl) = t− τl − βk(t− τl)

≥ t− t′ = gl(t) > τmax
B .

Hence, we obtain statement b) of Lemma 4. It also follows
from Claim B that slot t− τl− τk is not an ending slot of link
k. Statement d) now follows from Claim A, since k ∈ I∗.

The following Lemma 5 shows that if large gaps exist for
two links connected to a node n0 at certain specified times,
then there exists two links connected to a node n1, a neighbour
of node n0, which also have large gaps at earlier times than
the first two links.

Lemma 5. Suppose there exist links i0 = (n−1, n0) and
j0 = (n0, n

′
0) sharing a common node n0, and t0 >∑

ℓ∈Cn0
τℓ +maxl∈L s1l + τl − 1, such that a) and b) hold.

a) t0 is an ending slot of i0 and t1 = t0 − τi0 is an ending
slot of j0.
b) gi0(t0) > τmax

B and gj0(t1) > τmax
B .

Then, there exist links i1 = (n0, n1) ∈ Cn0 − {i0} and
j1 = (n1, n

′
1) ∈ Cn1

− {i1}, and a time t′ satisfying
t0 −

∑
ℓ∈Cn0

τℓ ≤ t′ < t0 such that 1) and 2) hold.
1) t′ (and t′+τi1 ) is an ending slot of j1 (and i1 respectively).
2) gj1(t

′) > τmax
B and gi1(t

′ + τi1) > τmax
B .

(see Figure 8(a) for an illustration).

Proof. Before starting the proof, we make some preliminary
remarks. The proof is inductive, and will generate a set of
links {la}N−1

a=0 , all connected to node n0 (hence in the set
Cn0

), with N ≤ |Cn0
|. The first two elements in this set are

given by l0 = i0 and l1 = j0.
For a link la := (n0,m) ∈ Cn0

and time t′, we say that
S1(la, t

′) holds if ∃ℓ ∈ Cm − {la} : gℓ(t′) > τmax
B .

For a set of links A ⊆ Cn0 and time t′, we say that S2(A, t
′)

holds if ∃ℓ ∈ Cn0 −A : gℓ(t
′) > τmax

B .
The proof below contains steps 1 to N − 1. At each

step a, we will show that there are two possibilities either
S1(la, ta − τla) holds, or S2(Aa, ta − τla) holds, where
Aa := {lp}ap=0. If S1(la, ta − τla) holds, we will show that
the proof is completed. Otherwise, if S2(Aa, ta−τla) holds, it
implies a further step a+1 is needed, where the next link, la+1,
is defined. Again, we show that either S1(la+1, ta+1 − τla+1

)
holds, or S2(Aa+1, ta+1 − τla+1). The proof is completed if
S1(la, ta−τla) holds at any step a, and proceeds to step a+1
otherwise. To complete the proof, we show that the process
has to terminate at a step N ≤ |Cn0

|. Rather than enumerate
all steps explicitly, we use mathematical induction.

The proof is presented as follows.
Step 1: We start with l0 := i0, l1 := j0, m1 = n′

0, t0 := t.
and t1 = t0−τl0 . It follows from Lemma 4 (identifying link l
in Lemma 4 with link l1 here) that there exists a link k ∈ I(l1)
such that t1 − τl1 is an ending slot of link k, but not of link
l1, and gk(t1 − τl1) > τmax

B . Either k ∈ Cm1
or k ∈ Cn0

. In
the former case, k = (m1,m

′
1) for some node m′

1 connected
to m1 in the tree, and we have S1 (l1, t1 − τl1) holding. In
this case, the result of the lemma holds, with i1 = l1 = j0,
n1 = m1, j1 = k, n′

1 = m′
1. In the case k ∈ Cn0

, we have
k ̸= l0 and k ̸= l1 since l0 and l1 have no ending slots in
the interval

[
t0 − τCn0

: t1
]
. But k ∈ Cn0

so we can define
m2 by k = (n0,m2). Defining A1 := {l0, l1} , we have that
S2 (A1, t1 − τl1) holds. In this case, to proceed to the next
step, we define l2 := k, A2 := A1

⋃
{l2}, t2 := t1 − τl1 =

t0 −
∑1

p=0 τlp . Note that l2 does not have an ending slot in
the interval

[
t0 − τCn0

: t2
]
, since gk(t2) > τmax

B , and neither
do the other links in A2, as observed earlier.

Now we state the inductive hypothesis. Suppose the links
in Aa = {l0, l1, . . . la} have been generated, with ending
slots given by tp = tp−1 − τlp−1

= t0 −
∑p−1

p′=0 τlp′ ,
p = 1, 2, . . . a (with t0 given as in statement of the lemma),
none of the links l0, l1, . . . la have an ending slot in the
interval

[
t0 − τCn0

: ta − τla
]
, none of S1(lp, tp+1) are true

for p = 1, 2, . . . , a− 1, but each of S2(Ap, tp+1) are true for
p = 1, 2, . . . , a− 1. Each link lp is connected to node n0, and
mp have been defined such that lp = (n0,mp), p = 1, 2, . . . a.

It follows from Lemma 4 (identifying link l in the Lemma
with link la here) that there exists a link k ∈ I(la) such
that ta+1 is an ending slot of link k, but not of link la,
and gk(ta+1) > τmax

B , where we define ta+1 = ta − τla =
t0 −

∑a
p=0 τlp . Either k ∈ Cma

or k ∈ Cn0
. In the former

case, k = (ma,m
′
a) for some node m′

a connected to ma in
the tree, and we have S1 (la, ta+1) holding. In this case, the
result of the lemma holds, with i1 = la, n1 = ma, j1 = k, and
n′
1 = m′

a. In the case k ∈ Cn0
, we have k /∈ {ℓ0, ℓ1, · · · ℓa}

since none of l0, l1, . . . la have an ending slot in the interval[
t0 − τCn0

: ta+1

]
. This means that S2 (Aa+1, ta+1) holds,

where we define la+1 := k, and Aa+1 = Aa

⋃
{la+1}.

The result of the lemma follows by induction, because the
above steps must terminate at the latest when a = |Cn0

|−1, for
then all the links lp connected to n0 will have been exhausted,
but Lemma 4 still applies, so in this case S1(la, ta+1) must
be true for ta+1 = t0 −

∑
ℓ∈Cn0

τℓ.
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Lemma 5 states that, under the conditions of the Lemma, the
links i1 = (n0, n1) and j1 = (n1, n

′
1) must exist, satisfying the

properties stated in the Lemma. This means that the conditions
of the Lemma are not compatible with node n0 being the
parent node of only leaf nodes in graph G, with node n−1

being the parent of node n0 in graph G. This observation will
be important in the Proof of Theorem 3 below.

A. Proof of Theorem 3

Proof of Theorem 3. For the proof, we will show that ∃T ≤
T ′ such that gl(T ) ≤ τmax

B for each l ∈ L. It follows from
Lemma 2 that w(T ) ≤ τmax

B .
Since no two links in a clique set Cn, for any node n, can be

allocated in the same slot, it follows that at least
∑

l∈Cn
τl slots

are needed for links in Cn. Hence, at least τmax
B are needed

to allocate τl slots for each link l ∈ L. Since w(T ) ≤ τmax
B ,

the result follows.
We therefore need to prove the statement ∃T ≤ T ′ such that

gl(T ) ≤ τmax
B for each l ∈ L, which we do by contradiction.

We suppose that there exists a link i0 with an ending slot t0
such that gi0(t0) > τmax

B for some t0 >
∑

l∈L τl. We will
show below that this supposition leads to a contradiction. For
the argument below, we first assume that this link, with the
stated property, exists.

Using Lemma 4, in which we identify the link l in Lemma 4
with i0 and the time t in the lemma with t0 here, there exists
a link k ∈ I(i0) such that gk(t0 − τi0) > τmax

B , and t0 − τi0
is the ending slot of link k. Let n0 denote the shared node
between links i0 and k. Now we apply Lemma 5 to this case.
To do this, we denote link k by j0 to be consistent with the
notation of Lemma 5. Thus, we have i0 = (n−1, n0) for some
node n−1, j0 = (n0, n

′
0), and the conditions a) and b) of

Lemma 5 hold. Thus, by Lemma 5 there exists links i1 and
j1 satisfying conditions 1) and 2) of the lemma. Treating n0

as the root node of graph G, we have the situation depicted
in Figure 8(a). It can be that j0 = i1 and n′

0 = n1, but not
necessarily.

Since conditions a) and b) of Lemma 5 apply to links i1 and
j1, we can apply Lemma 5 again. This process can be repeated
until there are no more links in G available to obtain new i1
and j1 links. Indeed, after µ such steps (with µ ≤ |L|) we have
selected and labeled certain links in the tree G as depicted
in Figure 8(b) (the depicted tree is of course a subgraph of
G). Eventually, at some point on or before µ reaching the
value |L|, we must have the situation holding that nµ is the
parent of only leaf nodes in the tree. This must happen because
G is finite. In this case, n′

µ is a child node of parent node
nµ and hence n′

µ is a leaf node. However, the conditions of
Lemma 5 hold, taking iµ here to represent i0 and jµ here to
represent j0, for i0 and j0 as stated in Lemma 5. Lemma 5 then
guarantees the existence of links iµ+1 and jµ+1 satisfying the
conditions a) and b) satisfied by the i1 and j1 in Lemma 5. But
this is a contradiction, because nµ is the parent of only leaf
nodes in the tree. This contradiction implies that the original
assumption that there exists a link i0 with an ending slot t0
such that gi0(t0) > τmax

B for some t0 > T , cannot be true. The

statement of the theorem then holds by the arguments given
in the first two paragraphs of this proof.

(a) At step 1 (b) At step µ

Fig. 8. Example diagram for proof of Theorem 3.

APPENDIX C: PROOFS OF THEOREM 5 AND THEOREM 6

Proof of Theorem 5. Suppose (16) holds for b ∈ B. Let
U (k)
b (tc) denote the set of active UE requests of class k at gNB

b ∈ B during time tc. Consider the following state evolution
equations.

N
(k)
b (tc) = N

(k)
b (0) + P

ν
(k)
b

(tc)− P1/D

(∫ tc

0

α(k)(s)ds

)
for k = 1, . . . ,K, where Pλ(.) represents the Poisson process
with parameter λ, and α(k)(tc) =

∑
u∈U(k)

b (tc)
αu(tc). Taking

expectations, we obtain E[N (k)
b (tc)]

= E[N (k)
b (0)] + ν

(k)
b tc −

1

D

∫ tc

0

α(k)(s)ds. (31)

For each backhaul link ℓb′ , b′ ∈ B, let Uℓb′ (tc) := {u ∈ U(tc) :
ℓb′ ∈ Pu} be the set of flows that are using link ℓb. Note that
Nℓb′ (tc) = |Uℓb′ (tc)|. Hence,

E[Nℓb′ (tc)] = E[Nℓb′ (0)]+νℓb′ tc −
1

D

∫ tc

0

∑
u∈Uℓ

b′
(s)

αu(s)ds

E[Nℓb′ (tc)−Nℓb′ (0)]

Rℓb′
=
νℓb′ tc

Rℓb′
− 1

D

∫ tc

0

γℓb′ (s)ds (32)

Note that Lb(tc) consists of backhaul links {ℓb′}b′∈B:p(b′)=b

and access links
⋃K

k=1{(b, u)}u∈U(k)
b (tc)

of gNB b. Hence,
from (31) and (32), we obtain E[Fb(N (tc))]− E[Fb(N (0))]

= tc

 K∑
k=1

ν
(k)
b

Ra
k

+
νℓb
Rℓb

+
∑

b′:p(b′)=b

νℓb′
Rℓb′


− 1

D

∫ tc

0

∑
l∈L(s)

b

⋃
{ℓb}

γ
(s)
l ds (33)

The first term > tc/D from (16), and the second term ≤
tc/D from (12). Hence, ∃δ1 > 0 such that E[Fb(N (tc))] −
E[Fb(N (0))] ≥ δ1tc/D. Since this is true for each tc ≥ 0, the
Markov process is not ergodic.
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Proof of Theorem 6. The proof consists of showing that the
fluid limit of {N (tc)}tc∈R+ is stable. The fluid limit of the
setup is characterized by the absolutely continuous trajectories
{N̄ (tc)}tc∈R+

∈ C(R|B|×K
+ ), which satisfy the following

differential equations

dN̄
(k)
b (tc)

dtc
= ν

(k)
b − 1

D

N̄
(k)
b (tc)

N̄max
B (tc)

(34)

for k ∈ [1 : K] and b ∈ B, where N̄max
B (tc) =

maxb∈B Fb(N̄ (tc)), and with
∑

b∈B
∑K

k=1 N̄
(k)
b (0) ≤ 1 for

the initial conditions on N̄ (0).
The fluid limit is stable provided ∃T > 0 such that N̄ (tc) =

0,∀tc ≥ T for all such initial conditions.
We now provide the key arguments for fluid limit stability.

For b ∈ B and N̄ ∈ R|B|×K
+ , recall

Fb(N̄ ) :=

K∑
k=1

N̄
(k)
b

Ra
k

+
N̄ℓb

Rℓb

+
∑

b′:p(b′)=b

N̄ℓb′

Rℓb′
(35)

Hence from (34), dFb(N̄ (tc))
dtc

equals

K∑
k=1

ν
(k)
b

Ra
k

+
νℓb
Rℓb

+
∑

b′:p(b′)=b

νℓb′
Rℓb′

− 1

D

Fb(N̄ (tc))

N̄max
B (tc)

(36)

Let

δ′ := min
b∈B

1

D
−

 K∑
i=1

νib
Ra

i

+
∑

b′:p(b′)=b

νlb′
Rlb′

+
νlb
Rlb

 > 0

Since N̄max
B (tc) = maxb∈B Fb(N̄ (tc)) and N̄max

B (tc) is ab-
solutely continuous, the derivative dFb(N̄ (tc))

dtc
≤ −δ′, when-

ever N̄max
B (tc) = Fb(N̄ (tc)) for almost every tc. Since

N̄max
B (tc) = maxb∈B Fb(N̄ (tc)), using similar arguments, we

obtain

dN̄max
B (tc)

dtc
≤ −δ′ (37)

for almost every tc such that N̄max
B (tc) > 0. Hence, the

fluid limit stability can be obtained by using N̄max
B (tc) as a

Lyapunov function.
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