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Abstract—We consider the stability region of a mmWave
integrated access and backhaul (IAB) network with stochastic
arrivals and time-varying link rates. In the scheduling of links,
we consider a limit on the number of RF chains, and the half-
duplex constraint which occurs due to the wireless backhaul
links. We characterize the stability region, and propose a back-
pressure policy for the IAB network under the RF chains and
half-duplex constraints. To implement the back-pressure policy,
it is required to compute the maximum weighted schedule, which
is a complex problem in general. For the IAB network, we
present a distributed message passing scheme to compute the
maximum weighted schedule, with almost linear complexity. We
also investigate a class of local scheduling policies for the IAB
network, which have a smaller stability region in general, but
require no message passing. We characterize the stability region
for the local class, and show that it is same as the global stability
region, if the link rates are un-varying. We provide a bound
on the gap between local and global regions when the links are
time varying. We propose a local max-weight algorithm which
achieves the stability region for the local class, and we present
numerical results.

Index Terms—Millimeter wave cellular IAB network, RF
chains constraint, Local max-weight scheduling algorithm, Dis-
tributed back-pressure scheduling algorithm

I. INTRODUCTION

mmWave cellular networks are expected to play a key role
in the next generation wireless communications (5G) [1]. They
are capable of delivering very high rates, due to the vast
amount of spectrum available in the mmWave band. However,
wireless communication at mmWave frequencies comes with
two major challenges, including 1) high isotropic propagation
loss, and 2) sensitivity to blockage by the objects in the envi-
ronment. To overcome the high propagation losses, directional
communication using beam-forming is being considered for
mmWave cellular. High beam-forming gains are achievable
by implementing large antenna arrays in a tiny area (which
is possible due to the small wavelengths). The mmWave cell
sizes are expected to be small due to the high propagation loss
and blocking, and ultra dense deployments of Next Generation
Node Bases (gNBs) are being considered to provide universal
coverage.

It is prohibitively expensive to provide fibre backhaul
support to all the gNBs under dense deployments. Hence,
there has been recent interest in multi-hop relaying (or self
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backhauling) in mmWave cellular networks as a potential
solution. Notably, as part of its standardization efforts, 3GPP
has completed a recent study item on the potential solutions for
efficient operation of integrated access and wireless backhaul
(IAB) for NR [2]. The study emphasizes the joint consid-
eration of radio-access and backhaul for mmWave cellular
networks.

In this paper, we consider a multi-hop IAB network, where
a fraction of gNBs are deployed with dedicated fiber backhaul
links, referred to as IAB donors [2]. The other gNBs (referred
to as IAB nodes) relay their backhaul data over wireless
mmWave links, possibly in multiple hops to an IAB donor.
According to [2], an IAB node establishes a link to a parent
node (either another IAB node or a donor) by following the
same initial access procedure as a user equipment (UE), and
the central unit at the IAB donor establishes a forwarding
route to the IAB node via the parent. Therefore, traffic of
a UE is forwarded along this established route from the IAB
donor to the UE (in downlink). The 3GPP study identified two
topologies for the operation of mmWave IAB, 1) spanning
tree and 2) directed acyclic graph topologies [2]. We focus
on the spanning tree topology, where each IAB node has a
unique parent node which forwards the traffic to the IAB node.
However, our model does not preclude having, in practice,
backup provisioning to deal with link or node failures. In our
model, we would consider these failures as a topology change
issue, where a forwarding route would need to be established
via a new parent node. An example of an IAB network can
be seen in Figure 1.

IAB donor
IAB node

UE

Fig. 1. mmWave IAB network. The red links are mmWave backhaul links
and the blue links are mmWave access links

We consider the problem of dynamic resource allocation
(or scheduling), which is a key challenge in the control
of multi-hop IAB networks [2], [3]. We consider resource
allocation in a in-band backhauling scenario (i.e., backhaul and
access use the same frequencies), which accommodates tighter
interworking access and backhaul links [2]. In an in-band
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scenario, the half-duplex constraint imposes restrictions on the
links that can be active simultaneously. There are also other
constraints on link activation due to beam-forming. Multiple
links at a gNB can be scheduled simultaneously using beam-
forming. However, there is a limit on the number of beams,
given by the number of RF chains at the gNB, which is the
maximum number of links that can be activated simultaneously
at the gNB.

For this 3GPP mmWave IAB setup, we consider a dynamic
scenario with stochastic packet arrivals and time-varying links.
The system is stable iff the queues do not buildup indefinitely
at any of the gNBs. We provide distributed scheduling algo-
rithms for the mmWave IAB network, and also characterize
the stability region, as the set of arrival rate vectors for which
stability is possible (under some scheduling algorithm).

Although resource allocation in mmWave multi-hop net-
works has been considered in the literature, only a few papers
have provided distributed solutions. Utility maximization for
joint routing and resource allocation for mmWave multi-hop
networks was considered in [4]–[10]. Other works considered
queue based models [9], [11]–[14]. Utility maximization was
used for path selection and scheduling in [9], [13], [14],
and for congestion control and scheduling in [11], [12].
Dynamic path selection algorithms for topology management
in mmWave networks were studied in [15]–[18]. With the
exception of [15], centralized solutions were provided in these
works.

In wireless scheduling literature, distributed scheduling al-
gorithms for various networks have been proposed [19]–[25].
Much of the work is focused on networks under a primary
interference constraint [19], [20], [24], [25]. Under these
constraints, any two links sharing a common node (either a
transmitter or a receiver) are not allowed to be scheduled si-
multaneously. The remainder considered more general conflict
constraints [21]–[23]. Under the conflict constraint, a given
link cannot be scheduled with any of the links in a predeter-
mined set. In [19], [20], maximal scheduling based distributed
algorithms were proposed, which were shown to achieve only
a fraction of capacity in general. In [21], a distributed version
of greedy maximal scheduling was proposed for a wireless
network with time varying link rates. In [22], [23], Carrier
Sense Multiple Access (CSMA) based distributed scheduling
algorithms were proposed and shown to achieve full capacity.
Pick-and-Compare based distributed algorithms were proposed
in [24], [25].

The results of the above mentioned papers cannot be directly
applied to the mmWave IAB networks for the following
reasons: 1) With the exception of [21], time varying link
rates are not considered, which is a key concern. 2) The
limit on RF chains imposes a novel form of constraint, which
cannot modelled using a conflict constraint. For an example,
consider a gNB with 2 RF chains and serving 3 downlinks
{ℓ1, ℓ2, ℓ3}. Even though no two links in {ℓ1, ℓ2, ℓ3} con-
flict with each other, only the links in the following sets
{ℓ1, ℓ2}, {ℓ1, ℓ3}, {ℓ2, ℓ3} can be scheduled simultaneously.
This form of constraint has not been considered in aforemen-
tioned distributed scheduling literature.

A. Contributions

In this paper, we provide distributed scheduling algorithms
which can be applied to a mmWave IAB network, with
RF chains constraints. Firstly, we propose a back-pressure
algorithm for the mmWave IAB network, under the half-
duplex and RF chains constraints. The back-pressure algorithm
relies on computing the maximum weighted schedule in each
slot, which is potentially highly complex. Our first contribution
(in the following) addresses this problem.

The proposed message passing scheme for the back-pressure
algorithm requires the messages to travel up the tree and back.
Due to this messaging overhead, the round-trip delays incurred
can be significant for large networks. Hence, we proceed to
investigate a class of local scheduling policies, which do not
require any exchange of messages other than listening to the
parent node. If the parent gNB p(n) of gNB n transmits to n in
a slot t, then gNB n does not transmit in slot t. Otherwise, gNB
n schedules on its downlinks according to a local scheduling
rule, which uses information of queues at n and the rates on
the downlinks.

We present our contributions as follows.
1) We provide a distributed message passing scheme to

compute the maximum weighted schedule in the IAB
network. We use this scheme to implement a novel back-
pressure-type algorithm that achieves the full stability
region for the IAB network. Computing the maximum
weighted schedule is a combinatorial problem but we
provide a greedy algorithm to solve it which is of very
low complexity, almost linear in the number of links. (See
statement 2 of Theorem 1.)

2) We characterize the stability region for a class of local
policies, and show that it is the intersection of individual
local stability regions at each gNB n. (See Theorem 4.).

3) We present a local version of the max-weight algorithm
for mmWave IAB networks, and show that it achieves the
stability region for the class of local policies.

4) We show that the stability region of the local class is the
same as that of global policies, provided the link rates
are unvarying. (See Theorem 5).

5) We provide a bound on the gap between the local and
global stability regions, when the links are time-varying.
(See Theorem 6).

6) Using numerical simulations, we show that the perfor-
mance (expected delays) of the proposed local algorithm
is very close to that of global policies, such as back-
pressure and max-weight algorithms for the considered
IAB scenarios.

B. Structure of the paper

The rest of the paper is as follows. In section II, we
introduce the IAB system model, including the graph repre-
sentation, SDMA model and link scheduling constraints. In
section III, we introduce the queueing model for the IAB
network, and provide the definition of a stationary scheduling
algorithm. In section IV, we provide the distributed message
passing scheme to compute the maximum weighted schedule
in an IAB network. In section V, we characterize the stability
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region of the IAB network. In section VI, we propose a
global back-pressure policy which achieves the stability region
characterized in section V. We also discuss a distributed
implementation using the message passing scheme developed
in section IV. In section VII, we investigate the class of local
scheduling policies, and characterize their stability region. We
show that the stability region of the local class is same as
the global stability region, if the link rates are un-varying. We
also provide a bound on the gap between the global and local
stability regions, when links are time-varying. In section VIII,
we propose a local max-weight algorithm which achieves the
stability region of the local class. In section IX, we compare
the delay performance of various scheduling policies in an
IAB network scenario.

II. SYSTEM MODEL

We consider the spanning tree topology and represent the
IAB network as the rooted tree graph G ≡ (U

⋃
N ,L, r)

where N is the set of all the gNBs, U is the set of all the UEs
and L is the set of all the wireless links, i.e., the backhaul
links and the access links. Here, the single IAB donor is the
root node r. For an IAB node n ∈ N − {r}, let p(n) denote
the upstream node of n in the path from n to r. We refer to
p(n) as the the parent of node n. An IAB node n ∈ N −{r}
gets backhaul data from node p(n) via the backhaul link bn
connecting n and p(n).

We adopt a slotted model with slots t ∈ Z+. In a slot t, each
link l ∈ L is associated with a rate µl(t). µl(t) is the number
of packets which can be transmitted over link l, provided l is
scheduled in slot t. Let µ(t) := [µl(t)]l∈L.

Assumption 1. • For a mmWave access link ℓ between
a gNB and a UE, we assume that µℓ(t) is a random
variable taking values from {0, 1, . . . , µmax}. The effects
of fading are modelled using the time-varying link rates.
Here, µℓ(t) = 0 corresponds to the small-scale outages1

(due to tracking errors, beam mis-alignment etc.,) which
last in the order of milli-seconds.

• For a gNB-gNB backhaul link b, we assume that µb(t) ∈
{0, µ̄b} is a random variable. The backhaul links are
highly directional LOS wireless links between two static
gNBs, and hence we do not model fading. Small-scale
outages are modelled using the 0 state.

• We assume that the link rate process {µ(t)}∞t=1 is sta-
tionary and ergodic. The stationary probability of being
in a state µ ∈ M is denoted by πµ. Here, M is the set
of all possible link rate vectors.

We use a binary variable sl(t) ∈ {0, 1} to indicate the
scheduled state of a link l ∈ L. sl(t) = 1 indicates l is
scheduled in slot t, and sl(t) = 0 indicates otherwise.

A. Downlink beamforming Model and Half-duplex constraints

Let Mn be the number of RF chains at a gNB n ∈ N .
The gNB n can beamform to up to Mn downstream nodes

1Note that this does not include blocking. The link outages caused due
to blocking can last in the order of seconds, and a change in topology is
necessary to address it. Once the new topology is established, the algorithm
proposed in the paper can be applied to stabilize the queues.

simultaneously. A downstream node can be a UE or a IAB
node receiving backhaul from n. Let Ln denote the set of all
downstream links of a gNB n ∈ N . The limit on number of
RF chains imposes the following scheduling constraint (1).∑

ℓ∈Ln

sℓ(t) ≤Mn,∀n ∈ N (1)

Let bn denote the backhaul link connecting n to p(n). The
half-duplex constraint on link scheduling is given in (2).

sbn(t)× sℓ(t) = 0,∀ℓ ∈ Ln, n ∈ N − {r} (2)

III. QUEUING MODEL AND SCHEDULING POLICIES

flow

flow

Fig. 2. Graph representation of the left IAB network in Figure 1.
The queuing model is as follows. Each source-destination

pair r − u is associated with a flow f , which is the set of
nodes in G in the path from r to u including both. The packets
destined for u have to routed along flow f through the network
(see Figure 2). Let F denote the set of all the flows in the
network. A gNB n maintains a queue qfn corresponding to
each flow f that passes through n, i.e., n ∈ f . Let qfn(t)
denote the number of packets in the queue of flow f , at node
n, in slot t. Note that qfn(t) = 0,∀t ∈ Z+ if n ̸∈ f .

The packet arrivals of each flow f ∈ F occur as an
exogenous process at the root r. Let afr (t) ∈ Z+ denote the
number of packets of flow f arriving during slot t at node r,
and let dfn(t) denote the number of departures in slot t from
flow f ’s queue at gNB n. For an IAB node n ∈ N − {r},
packets arrive over the backhaul link bn from node p(n) (see
Figure 2). Hence, arrivals into the queue qfn are the departures
from qfp(n). The queue recursion equations can be written as
follows

qfr (t+ 1) = qfr (t) + afr (t)− dfr (t)

qfn(t+ 1) = qfn(t) + dfp(n)(t)− dfn(t), ∀ n ∈ N − {r}

A. Scheduling Policy for the IAB Network

Let S denote the set of s = {sl}l∈L ∈ {0, 1}|L| such that,∑
l∈Ln

sl ≤Mn,∀n ∈ N (3)

sbnsl = 0,∀l ∈ Ln, n ∈ N (4)

S is the set of all the feasible schedules. In each slot t, a
scheduling policy has to choose a schedule s(t) ∈ S. In this
paper, we consider the class of stationary scheduling policies.

Definition 1. In each slot t, a stationary scheduling policy
chooses a schedule s(t) ∈ S , such that s(t) only depends on
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the current state [Q(t),µ(t)], Here s(t) := [sℓ(t)]ℓ∈L, µ(t) =
[µl(t)]l∈L and Q(t) = [qfn(t)][f,n]∈F×N .

• A deterministic stationary policy chooses according to a
mapping from the [q,µ] ∈ Z|F|×|N|

+ ×M to a schedule
s ∈ S.

• Under a randomized stationary policy, given a state
[Q,µ] ∈ Z|F|×|N|

+ × M, the schedule is the output of
a random variable YQ,µ with the probability distribution
PQ,µ on S. The probability distribution PQ,µ only de-
pends on the state {Q,µ}. At each time t, the schedule
s(t) is chosen independently according to the distribution
PQ(t),µ(t).

IV. FINDING THE MAXIMUM WEIGHTED SCHEDULE IN IAB
NETWORK

Several scheduling policies in the literature consider the
maximum weight optimization (5) for choosing the sched-
ule. Here, wl(t) is a function of [Q(t),µ(t)]. For example,
wl(t) := µl(t) corresponds to the maximum rate scheduling
policy. In later sections, we introduce the global back-pressure
policy for the IAB network, which considers maximizing the
back-pressure objective, as a maximum weight optimization.

s(t) = argmax
s∈S

wl(t)sl(t) (5)

Finding a maximum weighted schedule, i.e., a solution to
(5) is integral to these scheduling policies. In this section,
we obtain a dynamic programming based forward-backward
algorithm for obtaining a maximum weighted schedule in
almost linear time.

A similar dynamic programming (DP) approach for finding
a maximum weighted independent set on a tree is given in [26].
However, there are key differences between our maximum
weighted schedule problem for an IAB tree network, and the
independent set problem in [26], due to multiple RF chains.
The DP sub-problem in [26] is to choose the maximum of two
values, whereas in our case with multiple RF chains, we will
show that the DP sub-problem at each gNB is a combinatorial
optimization problem. For our problem, the schedule at each
DP step, has to choose among all the sets (of links) with
cardinality less than or equal to the number of RF chains.
For this combinatorial problem, we provide an optimal greedy
algorithm with complexity almost linear in the number of RF
chains.

Given a weight wl on each link l ∈ L, we consider the
following maximum weight optimization (6).

max
s∈S

∑
l∈L

wlsl (6)

For each n ∈ N
⋃
U , let Gn be the induced sub-graph of G

formed using the vertex set containing n and its descendants
in G. Let En denote the set of links of Gn. Consider the

maximum weight optimization on the sub-graph Gn as the
following integer linear program ILP (7)-(9).

max
[sl]l∈En∈{0,1}|En|

∑
l∈En

wlsl s.t. (7)∑
l∈Lm

sl ≤Mm,∀m ∈ N ∩Gn (8)

sbmsl = 0,∀l ∈ Lm,m ∈ N ∩Gn − {n} (9)

Here, (8) is the RF chains constraint at each gNB m in Gn,
and (9) is the half-duplex constraint at each gNB m in Gn −
{n}. Let vn denote the optimal value of ILP (7)-(9). Note, by
definition, vr is the optimal value of ILP (6).

A. Reduced complexity via an Inductive approach

Consider a set ψ ⊆ Ln such that |ψ| ≤ Mn. Let w(ψ) be
the maximum value of (7) subject to the additional constraints
(10), (11) along with (8), (9).

sl = 1,∀l ∈ ψ (10)
sl = 0,∀l ∈ Ln − ψ (11)

Note that w(ψ) is the maximum weight on Gn given that
the links in ψ are scheduled at gNB n. It follows that

vn = max
ψ⊆Ln

w(ψ) s.t. |ψ| ≤Mn (12)

To obtain w(ψ), we use the following Lemma 1. Refer to
Appendix B, for a proof.

Lemma 1. For each ψ ⊆ Ln such that |ψ| ≤Mn,

w(ψ) =
∑
l∈ψ

wl +
∑

m∈R(ψ)

∑
o∈C(m)

vo +
∑

m∈C(n)−R(ψ)

vm (13)

where, C(m) is the set of receiving nodes of links in Lm for
m ∈ N , and C(m) = ϕ for m ∈ U . R(ψ) := {m ∈ C(n) :
(n,m) ∈ ψ} is the set of receiving nodes of links in ψ.

Fig. 3. Graph Gn for illustration of inductive solution. In this example,
w({l1, l3}) =

∑
i=1,3 wli + v2 +

∑3
i=1 voi . Suppose Mn = 3, then

vn = max
ψ∈2{l1,l2,l3} w(ψ), where 2A represents the power set of a set

A.
(12) combined with Lemma 1 provides an inductive solution

for finding the maximum weight vn. This approach requires
the knowledge of values {vm}m∈C(n), {

∑
o∈C(m) vo}m∈C(n),

i.e, values from two generations of descendants from n.
Hence, dynamic programming can be applied to compute the
maximum weight, by solving (12) at each gNB n.

This approach has much reduced complexity compared to
directly solving (6), since the size of S grows exponentially
in the total number of links

∑
n∈N Ln, whereas {ψ ⊆ Ln :

|ψ| ≤ Mn} of (12) grows exponentially only in number of
links |Ln| at that level, in general.
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B. Complexity of optimization (12)

As briefly mentioned earlier, the possibilities for set ψ in
(12) can grow exponentially in |Ln|, in general. There are∑Mn

i=0

(|Ln|
i

)
possibilities for set ψ. Hence, the direct approach

to solve (12) leads to a high dimensional search when then
values of Mn, |Ln| are large. In the following, we present
Algorithm 1 to solve (12), and show that it has a computational
complexity of O(|Ln| log |Ln|).

Algorithm 1 Solver for sub-problem (12)
function LOCAL SOLVER(n, {vm,

∑
o∈C(m) vo}m∈C(n))

w′
(n,m) := w(n,m) − vm +

∑
o∈C(m) vo for m ∈ C(n).

Sort the links li ∈ Ln such that w′
l1
≥ . . . ≥ w′

l|Ln|
.

k∗ := max{k ≤Mn : w′
lk

≥ 0} & ψ∗ := {l1, . . . , lk∗}.
vn :=

∑
l∈ψ∗ w′

l +
∑
m∈C(n) vm.

return vn, ψ∗

end function

Theorem 1. 1) Algorithm 1 solves optimization (12) and
has a computational complexity of O(|Ln| log |Ln|),
where |Ln| is the set of downlinks at gNB n.

2) Algorithm 2 solves the maximum weight optimiza-
tion (6), and has a computational complexity of
O(

∑
n∈N |Ln| log |Ln|).

Proof. Since
∑

m∈C(n)−R(ψ)

=
∑

m∈C(n)

−
∑

m∈R(ψ)

, (13) can be

re-written as

w(ψ) =
∑

m∈R(ψ)

(w(n,m) +
∑

o∈C(m)

vo − vm) +
∑

m∈C(n)

vm

=
∑
l∈ψ

w′
l +

∑
m∈C(n)

vm (14)

where w′
(n,m) := w(n,m) − vm +

∑
o∈C(m) vo.

Hence, (12) is equivalent to maximizing
∑
l∈ψ w

′
l subject

to |ψ| ≤ Mn. To maximize
∑
l∈ψ w

′
l, Algorithm 1 chooses

ψ∗ as the links l ∈ Ln with the highest non-negative weights
w′
l such that |ψ∗| ≤Mn. It follows that ψ∗ also solves (12).
With the exception of sorting, all the operations in Algo-

rithm 1 are of linear computational complexity. The sort has
a complexity of O(|Ln| log(|Ln|)).

Recall that vr at root r is the optimal value of (6). Compu-
tation in Algorithm 2 only involves executing Algorithm 1 at
each gNB n ∈ N . Hence, 2) of Theorem 1 is immediate.

C. Implementation using Message Passing

Algorithm 2 presents the DP algorithm to compute the
maximum weighted schedule, by locally applying Algorithm 1
to compute the solutions to the DP sub-problem in (12). In
phase 1 of Algorithm 2, the solution to (12) (i.e., the maximum
weight vn and the corresponding local schedule ψn) at each
gNB n is computed by applying Algorithm 1 in lines 8-9.
The necessary information {vn,

∑
o∈C(m) vo}m∈C(n) which is

required for the local computation at the parent node p(n) is
sent upstream as a message in line 10. This message passing
is illustrated in Fig. 4(a).

In phase 2, the maximum weighted schedule is decided
using the local schedules {ψn} computed during phase 1. The

Algorithm 2 DP Algorithm for calculation of maximum
weighted schedule

1: Input {wl}l∈L

2: Output s∗

Phase 1 – Upstream weight computation, starting from the
leaves and going to the root.

3: for each leaf node n of G do
4: vn = 0.
5: Send the values {0, 0} to parent p(n).
6: end for
7: for each non-leaf node n of G do
8: After receiving the messages from each

child in C(n), run Algorithm 1 with
Argn:=(n, {vm,

∑
o∈C(m) vo}m∈C(n)) as the input.

9: (vn, ψn) = LOCAL SOLVER(Argn).
10: Send the values {vn,

∑
m∈C(n) vm} to parent p(n).

11: end for
Phase 2 – Downstream schedule computation, starting
from the root and going to the leaves.

12: s∗l = 1, ∀l ∈ ψr & s∗l = 0, ∀l ∈ Lr − ψr.
13: Send the value s∗(r,m) to each child m ∈ C(r).
14: for n ∈ N − {r} do
15: if s∗bn = 0 then // bn is the backhaul link connecting n to its

parent p(n).
16: s∗l = 1, ∀l ∈ ψn & s∗l = 0, ∀l ∈ Ln − ψn.
17: else
18: s∗l = 0,∀l ∈ Ln
19: end if
20: Send the value s∗(n,m) to each child m ∈ C(n).
21: end for

root node starts the process by computing [sl]l∈Lr
according to

ψr. The other nodes n decide [sl]l∈Ln
to be 0 if sbn = 0, i.e.,

backhaul link bn is part of the max-weight schedule, in line 18.
Otherwise, [sl]l∈Ln is chosen according to ψn in line 17. This
process is illustrated in Fig. 4(b).

(a) Upstream message passing for
weight computation

(b) Downstream message passing
for schedule computation

Fig. 4. An illustration of the forward-backward message passing for comput-
ing maximum weighted schedule in Algorithm 2.

V. STABILITY REGION OF THE IAB NETWORK

In this section, we define and characterize the stability
region of the IAB network. Following other works [27]–[29],
we assume that the process for exogenous packet arrivals
{afr (t)}∞t=0 of each flow f ∈ F is a stationary and ergodic
process, with a mean νf := E[afr (1)]. We also assume that
E[(afr (1))2] <∞ for each f ∈ F .
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Definition 2. We consider the system to be
stable under a scheduling policy if and only if
lim supt→∞

∑t−1
τ=0 E[Q(τ)]/t <∞.

Definition 3. We consider the system to be stabilizable if and
only if there exists a stationary scheduling policy under which
the system is stable.

We introduce the necessary terminology for characterizing
the stability region. Let ν := [νf ]f∈F denote the arrival rate
vector. For ℓ ∈ L, Let Fℓ ⊆ F denote the set of flows whose
path includes ℓ, and νℓ :=

∑
f∈Fℓ

νf denotes the average
arrival rate of packets into link ℓ.

For a given µ ∈ M, s ∈ S, we denote the corresponding
rate vector as µ⊙ s, where ⊙ is element-wise product. For a
given link state µ, let Cµ := {µ⊙s}s∈S denote the set of the
rate vectors corresponding to the feasible schedules.

The stability region is given by the set Λ as stated in
Theorem 2.

Λ :=

ν = [νf ]f∈F : [νℓ]ℓ∈L ∈
∑
µ∈M

πµConv(Cµ)

 (15)

where Conv(.) is the convex hull of the given set.
A point ν is in interior of Λ if and only if there exists a

δ > 0 such that ν + δ1 ∈ Λ, where 1 = [1]f∈F .

Theorem 2. 1) The system is not stabilizable if ν ̸∈ Λ.
2) Given a ν in interior of Λ, there exists a stationary

scheduling policy which which will stabilize the system.

Proof. The proof follows from standard arguments such as in
the proof of Theorem 5 in [28].

VI. GLOBAL BACK-PRESSURE POLICY

In this section, we present a back-pressure policy which
stabilizes the system for any arrival vector within Λ. The
construction of the policy is based on [28]–[30]. First, we
introduce the necessary notation. Let La ⊆ L represent the
set of all the gNB-UE access links.

Under the back-pressure policy, we define the following
weights on links. For an access link l ∈ La

⋂
Ln, define

wbpl (t) := µl(t)max
f∈Fl

qfn(t) (16)

For a backhaul link bn, connecting gNB p(n) to gNB n, we
define the weight as

wbpbn(t) := µbn(t) max
f∈Fbn

(
qfp(n)(t)− qfn(t)

)
(17)

In each slot t, the back-pressure policy chooses s(t) as the
optimal solution of following optimization (18)

max
s(t)∈S

∑
l∈L

wbpl (t)sl(t) (18)

Under the back-pressure policy, if a backhaul link bn is
scheduled in slot t, then only the packets corresponding to flow
f∗ := argmaxf∈Fbn

(qfp(n)(t)−q
f
n(t)) are sent over link bn in

slot t. In other words, dfp(n)(t) = 0 for each f ∈ Fbn −{f∗}.

Theorem 3. The back-pressure policy, as defined in (18),
stabilizes the network for any arrival rate vector ν interior
of Λ.

Proof. Refer to [28], [29] for proof. The DRPC policy in [28],
[29] is equivalent to the back-pressure policy in this paper.

A. Finding the maximum back-pressure schedule

Firstly, to evaluate the weight wbpl (t) for l ∈ Ln, the only
queue information required is the queue lengths at n, and the
children gNBs of n, in the case where l is a backhaul link.
Hence, wbpl (t) can be evaluated locally at n for each l ∈ Ln,
given that the children gNBs of n communicate the necessary
queue length information.

To implement the back-pressure algorithm, as in (18),
it is required to find a schedule s(t) ∈ S such that∑
l∈L w

bp
l (t)sl(t) is maximized. Note that this is a maximum

weight optimization, and Algorithm 2 can be implemented to
solve it in a distributed manner. The message passing scheme
depicted in Fig. 4 can be adopted for such an implementation.

At this point, we have obtained the first two contributions
listed in page 2. In what follows, we address the final four.

VII. LOCAL POLICIES AND THEIR STABILITY REGION

In the previous section, we have provided an optimal back-
pressure scheduling policy which achieves any arrival rate
vector within the stability region. We have also shown that
a distributed forward-backward message passing algorithm
can be used for its implementation. However, such a scheme
involves communicating the queue lengths upstream for the
calculation of weights on links in the first step. Once the
weights are calculated, the messages need to passed up and
down the tree for computing the schedule. This round-trip
communication can result in a severe message overhead when
the network gets large.

Hence, in this section, we consider a class of local schedul-
ing policies where the scheduling decisions are made locally
at the gNBs. For this class, scheduling does not require any
exchange of messages other than listening to the parent node.
If the parent gNB p(n) of gNB n transmits to n in a slot
t, then gNB n does not transmit in slot t. Otherwise, gNB
n schedules on its downlinks according to a local scheduling
rule, which uses information of queues at n and the rates on
the downlinks. We characterize the stability region of this class
of policies in Theorem 4. We propose a local algorithm, which
we show achieves any arrival rate vector in the stability region
characterized in Theorem 4.

We make the following stronger Assumption 2 on arrival
and link processes for the analysis of local policies. Parts 1)
and 2) of Assumption 2 are required for Lyapunov stability
arguments by considering 1-step conditional drift. We use
independence of the link processes in part 3) to derive a local
characterization of stability region for local policies in (21)
in the following section.

Note that under these assumptions, the state process
[Q(t),µ(t)]t∈Z+ is a time homogeneous Markov chain under
any stationary policy.
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Assumption 2. 1) For each f ∈ F , the arrival process
{afr (t)}∞t=0 is an i.i.d sequence of random variables,
satisfying E[(afr (t))2] <∞.

2) Let µn(t) := [µℓ(t)]ℓ∈Ln
. For each n ∈ N , {µn(t)}∞t=0

is an i.i.d sequence of random variables.
3) The arrival processes are independent across f ∈ F , and

independent of the links process µ(t). The link processes
µn(t) are independent across n ∈ N .

Consider the class P of local stationary scheduling policies
which make scheduling decisions as follows. The decision
process starts at the root, the root r makes a decision sr(t) :=
[sl(t)]l∈Lr

based on the local information µr(t),Qr(t) :=
[qfr (t)]f∈F . For every other node n, the decision is made as
follows

1) If sbn(t) = 1 (i.e., parent node p(n) has decided to
schedule backhaul link bn), then the links in Ln are not
scheduled i.e., sn(t) = 0

2) If sbn(t) = 0 (i.e., parent node p(n) has decided to not
schedule backhaul link bn), then sn(t) := [sl(t)]l∈Ln is
chosen such that

∑
l∈Ln

sl(t) ≤ Mn based on the local
information µn(t),Qn(t) := [qfn(t)]f∈F .

It is clear that the the scheduling policies in P do not violate
the half-duplex or the RF chains constraints, i.e., they are
feasible.

Due to point 3) of Assumption 2, it is clear the policies in
P satisfy

E[sbn(t)|µn(t)] = E[sbn(t)],∀n ∈ N − {r} (19)

where µn(t) := [µl(t)]l∈Ln
. Since sbn(t) ∈ {0, 1}, (19) is

equivalent to the statement that the scheduling decision of
backhaul link bn is made independently of the link states of
the downstream links of gNB n. Due to this property, the
local class only achieves a subset of the stability region Λ. We
illustrate this in section VII-C, and provide an upper-bound on
the gap between the stability regions in section VII-D.

A. Stability region of P

The property (19) along with point 3) of Assumption 2,
leads to a decomposition of stability region of P into indi-
vidual local stability regions corresponding to each gNB. The
system is stable when the arrival rate vector is interior to each
local stability region. We will now show this decomposition.

Consider the sub-network formed using node n and its
set of downstream links Ln. We say that a local schedule
sn := [sl]l∈Ln

∈ {0, 1}|Ln| of the sub-network is feasible
if and only if

∑
l∈Ln

sl ≤ Mn, i.e., number of activated
links is less than the number of RF chains at gNB n. Let
Sn denote the set of all the feasible local schedules sn. For
a given link state µn ∈ Mn ⊆ {0, . . . , µmax}|Ln|, we denote
the rate vector corresponding to feasible schedule as µn⊙sn,
where ⊙ represents element-wise product. For a given link
state µn, Cµn

:= {µn ⊙ sn}sn∈Sn
is the set of rate vectors

corresponding to the feasible schedules. We define the local
stability region Λn as

Λn :=
{
[νf ]f∈F :

[νl]l∈Ln

1− νbn/µ̄bn
∈

∑
µn∈Mn

πµn
Conv(Cµn

)
}

(20)

where µ̄bn is defined in Assumption 1. Recall that bn is the
backhaul link connecting n and its parent. Since the root node
r has wired backhaul (and hence no parent), treat νbr/µ̄br as
zero in the expression for Λr. We define ΛP as follows.

ΛP :=
⋂
n

Λn (21)

The stability region of the scheduling policies in class P is
characterized by ΛP as stated in Theorem 4.

Theorem 4. Suppose Assumption 2 holds, then
1) If ν ̸∈ ΛP , then the system is unstable under any policy

in P .
2) If ν + δ[1]f∈F ∈ ΛP for some δ > 0, then system is

stable under some policy in P .

Proof. For 1), we provide a proof by showing transience of the
underlying state Markov chain {Q(t),µ(t)}t∈N. For a detailed
proof, see Lemma 3 in Appendix C.

For 2), we follow a standard setup. We construct a ran-
domized stationary policy corresponding to the rate vector
ν + δ[1]f∈F . Stability under the constructed policy follows
from standard Lyapunov drift arguments. For a detailed proof,
see Lemma 4 in Appendix C.

B. Optimality of class P for un-varying link states

Clearly, ΛP ⊆ Λ since class P is a subset of class of all
the stationary policies. However, when the link state µ(t) is
constant for all t, the two stability regions are the same. The
result is stated in the following Theorem 5.

An intuitive explanation for this result is the following
observation. The stability characterization of ΛP results from
property (19), (which is satisfied by all the policies in P , under
Assumption 2). If the link state is un-varying, then (19) holds
for every stationary policy (and not just policies in class P).

Theorem 5. Suppose that the link rates are unvarying, i.e.,
µ(t) = µd > 0,∀t ∈ Z+. Then, the stability region for the
local class, ΛP is same as the global stability region Λ, i.e.,

ΛP = Λ (22)

Proof. See Appendix D.

C. Example with varying link states, where ΛP ⊂ Λ

We now demonstrate the other case, where ΛP is a strict
subset of Λ with an example.

r
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Fig. 5. Local policies stability region example
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Consider a network with two links, one backhaul link b from
r to n, and an access link l from n to u (see Fig. 5). In this
network, there is one flow f going from r to u. In each slot
t, a packet arrives independently at r with probability (w.p.)
νf . For the link states, µb(t) = 1,∀t ∈ Z+. For l, in each
slot t, µl(t) is either 0 or 1, independently w.p. 0.5. There
are two queues in this network qfr at r and qfn at n. First, we
present an optimal policy for this setup. Consider the policy
which schedules link l in each slot t such that µl(t) = 1, and
schedules link b otherwise. It is immediate that E[µl(t)sl(t)] =
E[µb(t)sb(t)] = 0.5. This policy stabilizes the network for any
νf < 0.5

Now, consider any policy in P . Here, in each slot t, sb(t)
is decided independently of µl(t). Suppose sb(t) = 1 in a
slot t, due to the half-duplex constraint, sl(t) = 0. Hence,
E[µl(t)sl(t)|sb(t) = 1] = 0. For the other case, suppose
sb(t) = 0 and sl(t) = 1. Since µl(t) = 1 w.p. 0.5, it follows
that E[µl(t)sl(t)|sb(t) = 0] = 0.5. W.l.o.g. we assume that
link b is scheduled in a slot t only if qfr (t) > 0. Hence,
E[qfn(t + 1) − qfn(t)|sb(t) = 1] = 1 and E[qfn(t + 1) −
qfn(t)|sb(t) = 0] ≥ −0.5. Also, E[qfr (t + 1) − qfr (t)|sb(t) =
1] ≥ νf − 1 and E[qfr (t + 1) − qfr (t)|sb(t) = 0] = νf . Let
P [sb(t) = 1] = p1(t). It follows that E[qfn(t + 1) − qfn(t)] ≥
1.5p1(t)− 0.5 and E[qfr (t+1)− qfr (t)] = νf − p1(t). Hence,

3E[qfr (t+ 1)− qfr (t)] + 2E[qfn(t+ 1)− qfn(t)] ≥ 3νf − 1

It is clear that any policy in P cannot stabilize the network for
νf > 1/3. This demonstrates that the stability region of class
P is a strict subset of the stability region Λ, for this example.

D. The gap between Λ and ΛP

In the previous section, we have illustrated that the global
stability region Λ is larger than the ΛP with an example. We
now characterize an upper bound on the gap between the two
stability regions Λ and ΛP , in Theorem 6.

Let µ̄ :=
∑

µ∈M πµµ be the expected link rate vector. We
define Λµ̄

n for n ∈ N as follows.

Λµ̄
n = {ν = [νf ]f∈F :

[νl]l∈Ln

1− νbn/µ̄bn
∈ Conv(Cµ̄n

)} (23)

where Cµ̄n
:= {µ̄n ⊙ sn}sn∈Sn

, and νbr/µ̄br = 0.
Note that

∑
µn∈Mn

πµnCµn ⊇ Cµ̄n , where
∑

here repre-
sents the Minkowski addition. Hence,∑

µn∈Mn

πµn
Conv(Cµn

) ⊇ Conv(Cµ̄n
) (24)

Hence from (20) and (23), we obtain Λn ⊇ Λµ̄
n for each

n ∈ N . Now from (21), we obtain Λ ⊇ ΛP ⊇
⋂
n Λ

µ̄
n .

By applying Theorem 5 with µd = µ̄, we obtain
⋂
n Λ

µ̄
n is

equal to Λµ̄ defined as follows.

Λµ̄ := {ν = [νf ]f∈F : [νl]l∈L ∈ Conv(Cµ̄)} (25)

Hence, we obtain

Λ ⊇ ΛP ⊇ Λµ̄ (26)

The relative gap G(a, b) between two rate vectors a, b ∈
R|F|

+ w.r.t a = [af ]f∈F is defined as (27). Recall that al =

∑
f∈Fl

af and bl =
∑
f∈Fl

bf for l ∈ L, where Fl ⊆ F is
the set flows whose path includes l.

G(a, b) = max
l∈L

|(bl − al)//al| (27)

where, (bl−al)//al = 0, if al = 0, bl = 0, (bl−al)//al = ∞,
if al = 0, bl > 0 and (bl − al)//al = (bl − al)/al o.w.

We define the relative gap GP between the stability regions
Λ and ΛP as

GP := sup
b∈Λ

inf
a∈ΛP

G(a, b) (28)

Note that by definition, for each b ∈ Λ, there exists a a ∈ ΛP
such that bl less than or equal to (1 +GP)al, for each l ∈ L.
Hence, Λ is larger than ΛP , at most by a proportion of GP .

Theorem 6. The gap GP between the stability regions Λ and
ΛP is less than or equal to maxl∈L

(E[(µl(t)−µ̄l)
2])1/2

µ̄l
.

Proof. Consider any b ∈ Λ. By definition of convex hull,
there exist vectors [ps|µ] ∈ R|S|

+ for each µ ∈ M such that∑
s∈S ps|µ = 1 and b =

∑
µ∈M

∑
s∈S πµps|µµ⊙ s.

Let ps :=
∑

µ∈M πµps|µ. Define a :=
∑

s∈S psµ̄ ⊙ s.
Clearly, a ∈ Λµ̄

1 . From (26), a ∈ ΛP . Note,

G(a, b) = max
l

|bl − al|//al (29)

≤ max
l

∑
s∈S

∑
µ∈M

πµps|µ|µl − µ̄l|sl//µ̄lsl (30)

≤ max
l

∑
s∈S

∑
µ∈M

πµps|µ|µl − µ̄l|/µ̄l (31)

= max
l

∑
µ∈M

πµ|µl − µ̄l|/µ̄l (32)

= max
l

E[|µl(t)− µ̄l|]
µ̄l

(33)

≤ max
l

(E[(µl(t)− µ̄l)
2])1/2

µ̄l
(34)

(34) follows from (33) by Jensen’s inequality. Since the choice
of b was arbitrary, the Theorem follows.

Theorem 6 says that if the standard deviations of the link
rates are small compared to their means, then the gap will be
small.

VIII. A LOCAL MAX-WEIGHT SCHEDULING ALGORITHM

We present a local version of the max-weight scheduling
algorithm which lies in class P , and achieves the stability
region of ΛP . This algorithm does not require any message
passing, since it is in P , and also acheives the global stability
region when the link rates are un-varying, due to Theorem 5.

For a link l ∈ Ln, let Qln(t) :=
∑
f∈Fl

qfn(t) be the total
number of packets queued at n to be sent over link l. Consider
the set of links L′

n(t) ⊆ Ln defined as follows; the set L′
n(t)

contains a link ℓ ∈ Ln iff either 1) ℓ is an access (gNB-UE)
link such that Qℓn(t) > 0 or 2) ℓ is a backhaul (gNB-gNB) link
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such that Qℓn(t) ≥ µℓ(t) > 0. We propose the local scheduling
rule as the following optimization

max
∑
l∈Ln

sl(t)µl(t)Q
l
n(t)

s.t.
∑

l∈L′
n(t)

sl(t) ≤Mn

sl(t) ∈ {0, 1},∀l ∈ L′
n(t)

sl(t) = 0,∀l ∈ Ln − L′
n(t) (35)

i.e., schedule the links with largest weights wl(t) :=
µl(t)Q

l
n(t) from the set L′

n(t) subject to the limit on RF
chains.

A. Local Max-weight Scheduling Policy

Recall sn(t) := [sl(t)]l∈Ln
. In each slot t, the root r starts

the decision process by choosing sr(t) according to the local
scheduling rule (35). Other nodes n ∈ N − {r} choose sn(t)
depending on the value of sbn(t) as follows

1) If the backhaul link into n, (i.e., bn) is scheduled in slot
t and sbn(t) = 1, then gNB n does not transmit and
sn(t) = 0.

2) Otherwise, sn(t) is chosen according to the local schedul-
ing rule (35).

It can be noted that the scheduling decision at n ∈ N − {r}
depends only on the local information µn(t), Q

l
n(t) and the

one bit of information sbn(t) (which is a part of sp(n)(t)) from
the parent p(n). Hence, it can be implemented in a distributed
manner by down-stream passing on the tree G. It is clear that
the algorithm is feasible, since it does not violate constraints
(1)-(2).

(a) Example network with
weighted links

(b) Links scheduled under the
traditional max-weight algorithm

(c) Links scheduled under the
proposed local max-weight al-
gorithm

Fig. 6. Numerical example

We illustrate the difference between the traditional max-
weight algorithm and the proposed algorithm with the example
in Figure 6. Consider the network and link weights Qln(t)µl(t)

given in Figure 6(a). Suppose each gNB node has 2 RF
chains, i.e., Mn = 2,∀n ∈ N and that Qln(t) ≥ µl(t),∀l ∈
Ln, n ∈ N . The links shown in Figure 6(b) are scheduled
under the traditional max-weight algorithm, with a total weight
of 17. The links shown in Figure 6(c) are scheduled under the
proposed local max-weight algorithm, with a total weight of
14.

Theorem 7. Given Assumption 2 holds, the system is stable
under the proposed local max-weight algorithm for any ν in
the interior of ΛP .

Proof. See Appendix E.

We now provide an overview of the proof of Theo-
rem 7. Using the standard 1-step conditional drift argu-
ments for the quadratic Lyapunov function

∑
l∈Lr

(Qlr(t))
2,

we show that the queues at gNB r are stable, i.e.,
lim supT→∞

∑T
t=0

∑
f∈F E[qfr (t)]/T < ∞, in Lemma 5 in

Appendix E.
For the rest of the gNBs n ∈ N −{r}, we use an inductive

argument to prove stability. We use the queue stability result
for gNB r as the anchor for the induction. Using 1-step con-
ditional drift arguments, we show that the long-term average
queue length lim supT→∞

∑T
t=0

∑
f∈F E[qfn(t)]/T at a gNB

n is bounded by a function of the long-term average queue
lengths at gNBs n′ in the path from n to r (not including n).
We finish the proof by applying strong induction.

The induction step result for a gNB n ∈ N −{r} is derived
by considering an appropriate Lyapunov function, which is not
the standard quadratic function of queue lengths.

At this point, we have obtained the first 5 contributions
listed on page 2. In the following numerical section, we
address the final contribution.

IX. NUMERICAL RESULTS

gNB 1

gNB 2

gNB 5
gNB 4

gNB 3

Core 

Network

Fig. 7. Simulated IAB Network Topology

We consider the gNB setup shown in Fig. 7. Here, gNB
1 is the IAB donor, and the other gNBs 2 − 5 are IAB
nodes with the IAB topology shown in Fig. 7. The parameters
for simulation are chosen as follows. The number of UEs
associated at each gNB is chosen uniformly randomly between
4 and 11. For the gNB-gNB backhaul links, the distance is
uniformly chosen between 340 and 440m. For the access gNB-
UE links, the gNB-UE distance is chosen uniformly randomly
between 0 and 200m. The distances for all the links are
provided in section A of Appendix A. For the arrival process,
the number of packet arrivals in each slot, corresponding to
each UE (or flow) is a i.i.d Poisson random variable. The mean
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is chosen to be the same for each UE. Other parameters are
given in the following Table I.

Following [31], we model outage (due to tracking errors
and beam misalignment etc.,) of each link as an alternating
renewal process. For access links, the outage periods are
geometrically distributed with mean 5.56 slots, and the non-
outage periods are geometrically distributed with mean 50
slots. Therefore, the stationary probability of an access link
being in outage is 0.1. For backhaul links, the outage periods
are are geometrically distributed with mean 1.01 slots, and the
non-outage periods are geometrically distributed with mean
100 slots.Therefore, the stationary probability of a backhaul
link being in outage is 0.01.

Given that the link is not in outage, we model the fading
process as follows. Following [32], we consider Rician fading
for access links with K factor as 13 dB for LOS links and 6
dB for NLOS links. The fading realizations are generated in-
dependently in each slot. We assume that adaptive modulation
and coding is used at the physical layer, and that the Shannon
rate is achieved based on the SNR determined by fading.

TABLE I
SIMULATION PARAMETERS

Paramter Value
Carrier frequency 23 GHz

Bandwidth 1 GHz
Propagation model 3GPP Urban Micro

Slot duration 125 µs
Packet size 100 Kb
RF chains 4

Noise spectral density -174 dBm/Hz
gNB transmit power 24 dBm per RF chain
Beamforming gain 30 dB (for access), 40 dB (for backhaul)

Noise figure 5 dB (for gNB), 7 dB (for UE)
Number of UEs at gNBs 1-5 10, 5, 9, 10, 8

A. Scheduling policies under comparison

For comparison, we consider the following five scheduling
policies.

1) Local Maxweight: We consider the local algorithm pro-
posed in section VIII.

2) Maxweight: We consider the traditional max weight algo-
rithm which requires global information. The max weight
algorithm maximizes the objective

∑
l∈L sl(t)µl(t)Q

l
n(t)

subject to the half-duplex and RF chains constraints (1-2).
3) Backpressure: We consider the back pressure algorithm

proposed in section VI.
4) Local PropFair: This is another algorithm from class

P . The proportional fairness algorithm is implemented
locally at a gNB n, provided backhaul link bn is not
scheduled. For scheduling, a gNB n chooses 4 links
(since there are 4 RF chains) with the highest ratios of
of instantaneous rate to average rate.

5) Local Maxweight 2: This is another algorithm from class
P . Here, the max weight algorithm implemented at a
gNB n maximizes

∑
l∈Ln

µl(t)Q
l
n(t)sl(t) provided the

backhaul link bn is not scheduled. There is a crucial
difference between the proposed Local Maxweight al-
gorithm and this scheme. Here, all the links in Ln are
considered for scheduling at a node n, whereas in the

proposed scheme scheduling of the backhaul links in Ln
with Qln(t) < µl(t) (i.e., small queue sizes) were avoided
in favour of scheduling links at the downstream gNBs.

There are three types of UEs in the network in Fig. 7. 1) The
UEs of gNB 1 are served by the root gNB 1. Hence packets
of these UEs are not relayed over backhaul links. Here, the
end-to-end delay for a UE is same as the scheduling delay
(at gNB 1). 2) The UEs of gNB 2 and gNB 3. The packets
of these UEs have to be relayed over 1 backhaul link. Here,
the end-to-end delay is the sum of scheduling delay at gNB
and backhaul delay (over 1 link). 3) The UEs of gNB 4 and
gNB 5. The packets of these UEs have to be relayed over
2 backhaul links. Here, the end-to-end delay is the sum of
scheduling delay at gNB and 2 backhaul delays (i.e., 2 hop).
We present the average end-to-end delays of UEs of various
gNBs w.r.t arrival rate in Fig. 8-Fig. 10.

Arrival rate (in packets/slot) is the expected rate of packet
requests corresponding to each UE (or flow). The packet size
(in Kb) and slot length (in µs) are presented in Table I. In
what follows, arrival rate is the expected rate of traffic (in
Mb/s) corresponding to each UE.

B. Results
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Fig. 8. Average delays of UEs at the root gNB 1
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(a) Average end-to-end delay vs. ar-
rival rate

Arrival rate (in Mb/s)

A
ve

ra
ge

 d
el

ay
 (

in
 m

s)

(b) Asymptotic behaviour at high ar-
rival rates

Fig. 9. Average end-to-end delays of UEs at gNBs 2&3

The results for UEs at the root node gNB 1 are presented
in Fig. 8. It can be observed that the average delays here are
much smaller (compared to the delays of UEs at other gNBs,
given in Fig. 9 and Fig. 10) for all the considered algorithms.
The Local PropFair algorithm has the best performance of
all the schemes, with the difference being more significant at
higher arrival rates. However, the following results will show
that the Local PropFair algorithm has a smaller stability region
compared to the other schemes.

The results for the UEs of gNBs 2&3 are presented in Fig. 9.
Local Maxweight 2 is unstable for the considered arrival rates,
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(a) Average end-to-end delay vs. ar-
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(b) Asymptotic behaviour at high ar-
rival rates

Fig. 10. Average end-to-end delays of UEs at gNBs 4&5

and the end-to-end delays are unbounded. Hence, it is not
plotted. It can be observed that the Local PropFair does not
stabilize the network for arrival rates higher than 310 Mb/s.
It can also be noted that the Local Maxweight algorithm has
a comparable performance to the global scheme Maxweight
and better performance than Backpressure. The asymptotic
behaviour of the schemes is shown in Fig. 9(b). The dashed
line is an upper-bound on the stability region. Here, it can
be noted that Local Maxweight algorithm has bounded delays
for arrival rates beyond the stability region. However for the
UEs of gNBs 4&5 (given in Fig. 10), the delays start blowing
up at lower rates than the global schemes, i.e., Maxweight
and Backpressure. The system is unstable under the proposed
algorithm at arrival rates beyond 442 Mb/s (see Fig. 10), even
though the delays are bounded for UEs at gNBs 1, 2&3. A
possible explanation for this is the hierarchical nature of the
proposed algorithm; the scheduling at an upstream node is
given priority over the downstream nodes.

The results for the UEs of gNBs 4&5 are presented in
Fig. 10. Local Maxweight 2 is unstable for the considered
arrival rates, and hence not plotted. It can be observed that the
delays under the PropFair algorithm blow up at approximately
300 Mb/s. It can be noted again that Local Maxweight
algorithm has a comparable performance to the Maxweight
algorithm. The asymptotic behaviour of the schemes is shown
in Fig. 10(b). The dashed line is an upper-bound on the
stability region. Here, it can be noted that the delays (under
Local Maxweight) start blowing up at lower rates than the
Maxweight and Backpressure algorithms. This is the gap
between the capacity achieved by the Local Maxweight al-
gorithm and the global schemes.

For the considered simulation, the gap in capacity (between
Backpressure and Local Maxweight algorithms) is small.
Theorem 6 provides an explanation. The variation (over time)
in the mmWave link states is small in the considered IAB
scenario. Hence, the proposed Local Maxweight scheduling
algorithm can be applied in such scenarios (i.e., where the link
variations are small) without a significant loss in capacity.

Fig. 11 presents the average delays of UEs at arrival rates
214 Mb/s (in Figure 11(a)) and 428 Mb/s (in Fig. 11(b)). As
mentioned earlier, the end-to-end delays to UEs at gNBs 2−5
are the sum of scheduling delay and backhaul delay. For the
UEs of gNBs i = 2, 3, the green bar represents the backhaul
delay on the link connecting gNB 1 and gNB i. For the UEs of
gNBs 4&5, the packets are routed along two backhaul links.
The green bar represents the delay on the first hop, and the
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(b) For arrival rate of 428 Mb/s

Fig. 11. Average end-to-end, queueing & scheduling delays. Here, (1)
corresponds to UEs of gNB 1, (2) corresponds to UEs of gNBs 2 & 3, and
(3) corresponds to UEs of gNBs 4 & 5.

pink bar represents the delay on the second hop.
For both the arrival rates, the Maxweight has the best perfor-

mance, Backpressure has the worst, and Local Maxweight has
a performance closer to Maxweight. A notable observation is
that, at low arrival rate 214 Mb/s, Local Maxweight algorithm
has much higher backhaul delays relative to Maxweight (see
(2),(3) in Fig. 11(a)). This is because the the backhaul links
b are only considered for scheduling in Local Maxweight
when the criterion Qbn(t) ≥ µb(t) holds. Hence under Local
Maxweight, the packets are queued until the backhaul link
capacity is reached before transmission is attempted (even
though a scheduling resource, i.e., RF chain, might be avail-
able earlier). This leads to idling under the Local Maxweight
algorithm at low arrival rates. At higher arrival rates such as
428 Mb/s, it can be observed that this phenomenon does not
have a significant impact on end-to-end delay, since the queues
build up quicker at higher arrival rates.

Another observation is that Backpressure has higher delays
than Local Maxweight in the considered scenario in Fig. 11.
A possible explanation is when scheduling a backhaul link,
under Backpressure, packets of only one flow (with largest
differential backlog) are transmitted. Hence, to fully utilize a
backhaul link (which must happen at reasonably high arrival
rates since back-pressure achieves capacity), the flow queue
sizes at each node in the path have to be be higher than or
equal to the backhaul link rates, which are large.

We now present the cumulative distribution of end-to-end
delays under various schemes at arrival rates 214 and 428
Mb/s.

Fig. 12(a) presents the distribution of end-to-end delays for
UEs of gNB 1. Here, it can be observed that the results of
considered algorithms are very similar.

Fig. 12(b) presents the distribution for UEs of gNBs 2 and
3. The results of the proposed algorithm are comparable to
Maxweight algorithm.

Fig. 12(c) presents the distribution for UEs of gNBs 4 and
5. The results of Local Maxweight algorithm are comparable
to Maxweight.

X. CONCLUSIONS AND FUTURE WORK

In the paper, we have provided new distributed and local
scheduling algorithms for mmWave IAB networks, under
practical constraints including half duplex constraints for each
IAB node. We also include beamforming constraints that arise
from the limited number of RF chains at each IAB node. A
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(a) UEs at gNB 1

End-to-end delay (in ms)

(b) UEs at gNBs 2 & 3

End-to-end delay (in ms)

(c) UEs at gNBs 4 & 5

Fig. 12. Cumulative distribution of end-to-end delays of UEs

fixed number of RF chains at a node puts a cap on the number
of beams that can be simultaneously activated.

We have provided an efficient dynamic programming algo-
rithm for computing the maximum weighted schedule, which
can be implemented using message passing. The message
passing scheme was used to implement an optimal global
back-pressure policy for IAB networks in a distributed manner.

We have also proposed a local max-weight policy which
only requires local information at gNBs for scheduling. We
have shown that there is no gap when the link rates are
unvarying. We have characterized a bound on the gap between
the stability regions of the local policy and the global back-
pressure policy, when links are time-varying. The gap is small
when the standard-deviation of the link rate is small relative
to the mean. Using numerical simulation, we have shown
that the gap is indeed small in practical IAB scenarios. In
simulation, the local max-weight algorithm has comparable
delay performance to the global back-pressure algorithm.

In this paper, we have focused on the spanning tree topology
described by 3GPP [2]. Distributed scheduling algorithms for
other topologies such as forests and directed acyclic graphs
can be considered for future work. Another interesting topic
is to jointly consider scheduling and topology management
under blocking.

APPENDIX A: SUPPORTING MATERIAL

We use the notation ∆t(·) to mean the time difference of a
process at t+1. For example, ∆t(Q

l
n) := Qln(t+1)−Qln(t).

Consider Pn as the set of nodes in the path from n to
r including n and r. We now derive telescoping equations
of the aggregate queues flowing along this path. The re-
sults will be used in the proofs that follow. Let Aℓr(t) :=∑
f∈Fℓ

afr (t),∀ℓ ∈ L be the total number of arrivals at the
root r which will use link ℓ. Let Dℓ

n(t) :=
∑
f∈Fℓ

dfn(t),∀ℓ ∈
L, n ∈ N be the number of departures from node n in
slot t, which will go over link ℓ. Also recall Qℓn(t) :=

∑
f∈Fℓ

qfn(t),∀ℓ ∈ L, n ∈ N as the queue length in slot
t at node n, of packets which will use link ℓ.

Consider a link ℓ ∈ Ln. For any n′ ∈ Pn − {r},

Qℓn′(t+ 1)−Qℓn′(t) = Dℓ
p(n′)(t)−Dℓ

n′(t) (36)

Qℓr(t+ 1)−Qℓr(t) = Aℓr(t)−Dℓ
r(t) (37)

Summing over (37) and (36) for n′ ∈ Pn − {r} yields

Vℓ(t+ 1)− Vℓ(t) = Aℓr(t)−Dℓ
n(t) (38)

where Vℓ(t) :=
∑
n′∈Pn

Qℓn′(t) is the aggregated queue length
of ℓ along path Pn, for each node n ∈ N and ℓ ∈ Ln.

Lemma 2. Suppose Dl
n(t) = min{µl(t)sl(t), Qln(t)} for

some l ∈ Ln under some scheduling policy. Then,

Qln(t)
(
µl(t)sl(t)−Dl

n(t)
)
≤ µ2

max (39)

for each l ∈ Ln, n ∈ N , t ∈ Z+.

Proof. Suppose Qln(t) > µmax, then µl(t)sl(t)−Dl
n(t) = 0.

Hence, Qln(t)(µl(t)sl(t) − Dl
n(t)) = 0. For the other case,

suppose Qln(t) ≤ µmax. Note that 0 ≤ µl(t)sl(t) −Dl
n(t) ≤

µmax. The result is immediate

A. Additional simulation parameters
The gNB i - gNB j distances (in m) for (i, j) =

(1, 2), (1, 3), (2, 4), (3, 5) are 396.5, 387.5, 369.3, 346.4. The
vector of gNB i to UE distances (in m) for i = 1, . . . , 5 are
[94.8, 89.0, 174.4, 82.2, 59.4, 165.5, 195.3, 12.6, 143.1, 180.3];
[156.5, 169.9, 108.0, 191.6, 169.0];
[147.3, 75.4, 122.2, 164.2, 132.9, 131.8, 157.2, 143.3, 161.3];
[155.0, 179.5, 144.4, 190.6, 113.0, 60.1, 109.7, 67.5, 182.1, 43.3]
and [158.3, 148.0, 181.0, 89.2, 185.1, 118.6, 173.7, 108.8]
respectively.

APPENDIX B: PROOF OF LEMMA 1
Proof. Note the following identity, for each node m ∈ G,∑

l∈Em

wlsl =
∑
l∈Lm

wlsl +
∑

o∈C(m)

∑
l∈Eo

wlsl (40)

since Em = Lm
⋃
o∈C(m)Eo.

From (40), we obtain that
∑
l∈En

wlsl equals∑
l∈Ln

wlsl +
∑

m∈R(ψ)

∑
l∈Em

wlsl +
∑

m∈C(n)−R(ψ)

∑
l∈Em

wlsl (41)

Consider any m ∈ R(ψ). Since s(n,m) = 1, from the half-
duplex constraint, sl = 0 for each l ∈ Lm. Hence from (40),∑
l∈Em

wlsl =
∑
o∈C(m)

∑
l∈Eo

wlsl. Hence, from (7) and
(41), we obtain

w(ψ) =
∑
l∈ψ

wl +
∑

m∈R(ψ)

∑
o∈C(m)

max
[sl]l∈Eo

∑
l∈Eo

wlsl

+
∑

m∈C(n)−R(ψ)

max
[sl]l∈Em

∑
l∈Em

wlsl

where [sl]l∈Eo is subject to the scheduling constraints on
graph Go for each o ∈ C(m),m ∈ R(ψ), and [sl]l∈Em

is
subject to the scheduling constraints on graph Gm for each
m ∈ C(n)−R(ψ).

By the definition in (7)-(9), vm equals the maximum value
of

∑
l∈Em

wlsl such that [sl]l∈Em
is subject to the scheduling

constraints on graph Gm. Hence, we obtain (13).
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APPENDIX C: PROOF OF THEOREM 4

Lemma 3. If ν ̸∈ Λn for any n ∈ N , then the system is
unstable under any policy in P .

Proof. Firstly, note that under Assumption 2, the state process
{Q(t),µ(t)}∞t=0 is a time homogeneous Markov chain.

Suppose that the system is stable under a stationary policy
in P for some [νl]l∈Ln

̸∈ Λn. By definition, for a stable
system lim supt→∞

∑t−1
τ=0 E[Q(τ)]/t < ∞. It follows that

the Markov chain {Q(t),µ(t)}∞t=0 must be positive recurrent.
Assume that the Markov chain {Q(t)}∞t=0 starts with the
stationary distribution, i.e., the initial distribution is same
as the stationary distribution of the Markov chain. We now
provide a proof by contradiction.

Since the Markov chain is in stationary distribution and the
system is stable, E[µbn(t)sbn(t)] ≥ νbn . Hence, P[sbn(t) =
1] ≥ νbn/µ̄bn and

P[sbn(t) = 0] ≤ 1− νbn/µ̄bn (42)

Consider a link l ∈ Ln, ∀t ≥ 0. From (38) in Appendix A
and (42), we obtain

E[∆t(Vl)] ≥ νl − (1− νbn
µ̄bn

)E[µl(t)sl(t)|sbn(t) = 0] (43)

Note that P[µn(t)|sbn(t)] = πµn
, for any policy in class P .

Hence, we obtain

[E[µl(t)sl(t)|sbn(t) = 0]]l∈Ln
=∑

µn∈Mn

πµn

∑
sn∈Sn

psn|0,µn
µn ⊙ sn (44)

where psn|0,µn
:= P[sn(t) = sn|sbn(t) = 0,µn(t) = µn].

Hence from (44), it follows that

[E[µl(t)sl(t)|sbn(t) = 0]]l∈Ln
∈

∑
µn∈Mn

πµn
Conv(Cµn

) (45)

Suppose νl
1−νbn/µ̄bn

≤ E[µl(t)sl(t)|sbn(t) = 0] for each l ∈
Ln, then from (45), ν ∈ Λn, which is a contradiction since it
is given that ν ̸∈ Λn for some n.

Hence, there must exist a ℓ ∈ Ln such that νℓ >
(1 − νbn/µ̄bn)E[µℓ(t)sℓ(t)|sbn(t) = 0]. Then, E[Vℓ(t + 1) −
Vℓ(t)] > 0 from (43). This is also a contradiction since the
Markov chain is in stationary distribution, which completes
the proof.

Lemma 4. If ν + δ1 ∈ ΛP for some δ > 0, then the system
is stable under a policy in P .

Proof. Since ν(1) := ν + δ1 ∈ ΛP , it follows that ν(1) ∈⋂
n Λn. We will use the vector ν(1) to construct a stationary

randomized policy ŝ in the following. By definition of Λn,

[ν
(1)
l ]l∈Ln

1− ν
(1)
bn
/µ̄bn

∈
∑

µn∈Mn

πµn
Conv(Cµn

) (46)

Hence, there must exist {cµn}µn∈Mn such that cµn ∈
Conv(Cµn), which satisfy

[ν
(1)
l ]l∈Ln

1− ν
(1)
bn
/µ̄bn

=
∑

µn∈Mn

πµn
cµn

(47)

Since cµn
∈ Conv(Cµn

), it can be expressed as

cµn
=

∑
sn∈Sn

psn|µn
µn ⊙ sn such that

∑
sn∈Sn

psn|µn
= 1

(48)

Now, consider a stationary randomized policy ŝ in P which
makes decisions ŝ(t) based on µ(t) defined as follows. The
decision process starts at the root, the root r chooses ŝr(t) =
sr ∈ Sr w.p. psr|µr(t) given the current link state µr(t) ∈
Mr. For every other node n, the decision is made as follows

1) If ŝbn(t) = 1 (i.e., parent node p(n) has decided to
schedule backhaul link bn), then the links in Ln are not
scheduled i.e., ŝn(t) = 0.

2) If ŝbn(t) = 0 (i.e., parent node p(n) has decided to
not schedule backhaul link bn), then gNB n chooses
ŝn(t) = sn ∈ Sn w.p. psn|µn(t) given the current link
state µn(t) ∈ Mn.

We also assume that a link l is not scheduled if µl(t) = 0.
We will now show that E[µl(t)ŝl(t)] = ν

(1)
l for each l ∈ L,

using induction. Firstly, by construction of ŝ and from (47)-
(48), E[µl(t)ŝl(t)] = ν

(1)
l for each l ∈ Lr, (∵ νbr/µ̄br = 0).

Now suppose E[µl(t)ŝl(t)] = ν
(1)
l for each l ∈ Ln for some

n ∈ N . Consider a backhaul link bm from gNB n to gNB m.
Since bm ∈ Ln, E[µbm(t)ŝbm(t)] = ν

(1)
bm

. Since µbm(t) ∈
{0, µ̄bm}, and since ŝbm(t) = 1 only if µbm(t) > 0, we obtain

P[ŝbm(t) = 1] =
ν
(1)
bm

µ̄bm
(49)

Hence, for each l ∈ Lm,

E[µl(t)ŝl(t)] = P[sbm(t) = 0]E[µl(t)ŝl(t)|ŝbm(t) = 0] (50)

= (1−
ν
(1)
bm

µ̄bm
)E[µl(t)ŝl(t)|ŝbm(t) = 0] (51)

Note that (52) holds, since P[µm(t)|ŝbm(t)] = πµm
. Here,

psm|µm
:= P[ŝm(t) = sm|sbm(t) = 0,µm(t) = µm].

[E[µl(t)ŝl(t)|ŝbm(t) = 0]]l∈Lm
=∑

µm∈Mm

πµm

∑
sm∈Sm

psm|µn
µm ⊙ sm (52)

Hence, from (51), (47) and (48), we obtain E[µl(t)ŝl(t)] =
ν
(1)
l for each l ∈ Lm, which completes the induction.

Since E[µl(t)ŝl(t)] = ν
(1)
l > νl for each l ∈ L, using

standard Lyapunov drift arguments, such as in Theorem 6 of
[28], it can be shown that the stationary randomized policy
stabilizes the network.

APPENDIX D: PROOF OF THEOREM 5

Proof of Theorem 5. Clearly Λ ⊇ ΛP , since local class P is
a subset of all the stationary policies. Here, we will show that
ΛP ⊇ Λ, which completes the proof.

Consider a ν ∈ Λ. Since it is given that µ(t) = µd,∀t, it
follows from the definition of Λ that [νl]l∈L ∈ Conv(Cµd).
Hence,

[νl]l∈L ∈ Conv([µd ⊙ s]s∈S) (53)
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where S is the set of all feasible schedules and ⊙ is the
component-wise product. Therefore, ∃[ps]s∈S ≥ 0 such that
[νl]l∈L =

∑
s∈S psµ

d ⊙ s and
∑

s∈S ps = 1.
Consider some n ∈ N . The set of feasible states S can be

divided into two disjoint sets A1 := {s ∈ S : sbn = 0} and
A2 := {s ∈ S : sbn = 1}

Note that
∑

s∈S psµ
d
bn
sbn = νbn . It follows that∑

s∈A2
psµ

d
bn

= νbn . Therefore,∑
s∈A2

ps = νbn/µ
d
bn ;

∑
s∈A1

ps = 1− νbn/µ
d
bn (54)

Consider the links l ∈ Ln, we have

[νl]l∈Ln
=

∑
s∈S

ps[µ
d
l ]l∈Ln

⊙ [sl]l∈Ln
(55)

Let αn(s) be the local feasible schedule [sl]l∈Ln
corre-

sponding to the feasible schedule s. We define for each local
schedule sn ∈ Sn,

p′sn
=

∑
s∈A1:αn(s)=sn

ps (56)

Note that αn(s) = [0]l∈Ln
,∀s ∈ A2. Therefore, it follows

from (55) and (56) that

[νl]l∈Ln
=

∑
sn∈Sn

p′sn
[µdl ]l∈Ln

⊙ sn (57)

By construction,
∑

sn∈Sn
p′sn

=
∑

s∈A1
ps. Therefore,∑

sn∈Sn
p′sn

= 1 − νbn
µd
bn

(from (54)). Diving (57) on both

sides by (1− νbn/µ
d
bn
), we obtain

[νl]l∈Ln

(1− νbn/µ
d
bn
)
=

∑
sn∈Sn

p′sn

(1− νbn/µ
d
bn
)
[µdl ]l∈Ln ⊙ sn (58)

Since,
∑

sn∈Sn

p′sn
(1−νbn/µd

bn
)
= 1, it follows that

[νl]l∈Ln

(1− νbn/µ
d
bn
)
∈ Conv(µdn ⊙ sn) (59)

where µdn = [µdl ]l∈Ln
. Hence, ν ∈ Λn. Since the choice of

n was arbitrary, it follows that ν ∈ ΛP . Hence, ΛP ⊇ Λ.

APPENDIX E: STABILITY UNDER THE LOCAL
MAX-WEIGHT ALGORITHM

Lemma 5. Given ν is interior of ΛP , the queues at node
r are stable under the proposed scheduling policy, i.e.,
lim supT→∞

∑T
t=0

∑
f∈F E[qfr (t)]/T <∞

Proof of Lemma 5. In this proof, s(t) refers to the the local
max-weight policy, and ŝ(t) refers to the randomized policy
of Lemma 4. Define V locr (t) :=

∑
l∈Lr

(Qlr(t))
2.

E[∆t(V
loc
r )|Q(t)] =

∑
l∈Lr

E[
(
∆t(Q

l
r)
)2
+2Qlr(t)∆t(Q

l
r)|Q(t)]

≤ K + 2
∑
l∈Lr

Qlr(t)E[Alr(t)−Dl
r(t)|Q(t)] (60)

where K =
∑
l∈Lr

E[(Alr(t))2]+|Lr|µ2
max. (60) follows since

(∆t(Q
l
r))

2 ≤ (Alr(t))
2 + µ2

max for each l ∈ Lr.

Under the proposed local max-weight algorithm, sl(t) =
0,∀l ∈ Lr−L′

r(t). Hence, from Lemma 2 and (60), we obtain

E[∆t(V
loc
r )|Q(t)] ≤ K1 + 2

∑
l∈Lr

Qlr(t)νl

− 2E[
∑

l∈L′
r(t)

Qlr(t)µl(t)sl(t)|Q(t)] (61)

where K1 := K + 2|Lr|µ2
max. Since the proposed local max-

weight algorithm maximizes the final term in (61), it must
greater than 2E[

∑
l∈L′

r(t)
Qlr(t)µl(t)ŝl(t)|Q(t)]. Hence, from

(61), and since ŝ(t) in Lemma 4 only makes decisions based
on the channel state µ(t), we obtain

E[∆t(V
loc
r )|Q(t)] ≤ K1 + 2

∑
l∈Lr

Qlr(t)νl

− 2E[
∑

l∈L′
r(t)

Qlr(t)µl(t)ŝl(t)] (62)

Note that ∀l ∈ Lr −L′
r(t), either µl(t) = 0 or Qlr(t) ≤ µl(t).

Therefore, Qlr(t)µl(t)ŝl(t) ≤ µ2
max. Hence,

0 ≤ 2(|Lr|µ2
max − E[

∑
l∈Lr−L′

r(t)

Qlr(t)µl(t)ŝl(t)]) (63)

Adding (63) to (62), we obtain

E[∆t(V
loc
r )|Q(t)] ≤ Kr + 2

∑
l∈Lr

Qlr(t)(νl − E[µl(t)ŝl(t)])

where Kr = K1+2|Lr|µ2
max. Since ŝ(t) is a stabilizing policy,

∃δr > 0 such that E[µl(t)ŝl(t)] ≥ νl + δr,∀l ∈ Lr. Hence,

E[∆t(V
loc
r )|Q(t)] ≤ Kr − 2δr

∑
l∈Lr

Qlr(t) (64)

Proceeding similarly as in the proof of
Lemma 4.1 in [29], we obtain the result
lim supT→∞

∑T−1
t=0

∑
l∈Lr

E[Qlr(t)]/T ≤ Kr

2δr
.

Lemma 6. Given ν is interior of ΛP , ∃ {Wl(t)}l∈Ln
, non-

negative functions of Q(t), and Kn, ϵn > 0 such that∑
l∈Ln

Qln(t)E[∆t(Wl)|Q(t)] ≤ Kn − ϵn
∑
l∈Ln

Qln(t)

for each n ∈ N −{r}, under the proposed scheduling policy.

Proof of Lemma 6. First, we introduce a local randomized
policy ŝloc(t) and derive necessary properties. In the proof,
s(t) refers to the proposed local max-weight policy.

Consider a local randomized policy which operates at n, and
makes decisions ŝloc(t) := [ŝlocℓ (t)]ℓ∈Ln , based on µn(t) :=
[µl(t)]l∈Ln and sbn(t). We make use of the stabilizing policy
ŝ(t) of Lemma 4 for the following construction. We define
the policy as follows; ∀l ∈ Ln

P[ŝlocl (t) = 1|µn(t), sbn(t) = 1] = 0 (65)

P[ŝlocl (t) = 1|µn(t), sbn(t) = 0] =

P[ŝl(t) = 1|µn(t), ŝbn(t) = 0] (66)
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Note that sbn(t) is a function of
[{qfn′(t)}f∈F ,µn′(t)]n′∈Pn−{n}. Hence from Assumption 2,
µn(t) is independent of sbn(t). Now using (66), we obtain

E[µl(t)ŝlocl (t)|sbn(t) = 0] =E[µl(t)ŝl(t)|ŝbn(t) = 0] (67)

Since the system is stable under the policy ŝ(t),

E[µl(t)ŝl(t)] > νl (68)
E[µl(t)ŝl(t)|ŝbn(t) = 0] > νl/P[ŝbn(t) = 0] (69)

Since the queue at backhaul link bn is stable under ŝ(t), we
have E[µbn(t)sbn(t)] > νbn , which implies P[ŝbn(t) = 1] >
νbn/µ̄bn , and P[ŝbn(t) = 0] < 1− νbn/µ̄bn . Hence, it follows
from (67) and (69), for each l ∈ Ln, ∃δ > 0 such that

E[µl(t)ŝlocl (t)|sbn(t) = 0] = (1− νbn/µ̄bn)
−1νl + δ (70)

For l ∈ Ln, define Wl(t) := Vl(t) +αlVbn(t), where αl :=
δ/2νbn + νl/(µ̄bn − νbn). From (38) for l ∈ Ln and bn,

∆t(Wl) = Alr(t)−Dl
n(t) + αl(A

bn
r (t)−Dbn

p(n)(t)) (71)

Note that whenever sbn(t) = 1, we have sl(t) = 0,∀l ∈
Ln. Moreover, bn is scheduled only when µbn(t) = µ̄bn and
Qln(t) ≥ µ̄bn . Hence from (71), for any l ∈ Ln

E[∆t(Wl)|Q(t), sbn(t) = 1] = νl + αl(νbn − µ̄bn) (72)
= −(µ̄bn/νbn − 1)δ/2 =: −δ′ < 0 (73)

Let E1 denote the event {Q(t), sbn(t) = 1}. Hence,

E[
∑
l∈Ln

Qln(t)∆t(Wl)|E1] = −δ′
∑
l∈Ln

Qln(t) (74)

For the other case sbn(t) = 0, let E0 denote the event
{Q(t), sbn(t) = 0}. Consider

E[
∑
l∈Ln

Qln(t)∆t(Wl)|E0] (75)

=
∑
l∈Ln

Qln(t)(νl + αlνbn)−
∑

l∈L′
n(t)

Qln(t)E[Dl
n(t)|E0] (76)

≤
∑
l∈Ln

Qln(t)(νl + αlνbn)−
∑

l∈L′
n(t)

Qln(t)E[µl(t)sl(t)|E0]

+ |Ln|µ2
max (77)

(76) follows since sl(t) = 0, l ∈ Ln − L′
n(t), and (77) is

due to Lemma 2.
Since the proposed local max weight policy maximizes∑
l∈L′

n(t)
Qln(t)µl(t)sl(t) whenever sbn(t) = 0, we obtain

E[
∑
l∈Ln

Qln(t)∆t(Wl)|E0]

≤|Ln|µ2
max +

∑
l∈Ln

Qln(t)(νl + αlνbn)

−
∑

l∈L′
n(t)

Qln(t)E[µl(t)ŝlocl (t)|sbn(t) = 0] (78)

∀l ∈ Ln − L′
n(t), either µl(t) = 0 or Qln(t) ≤ µl(t). This

implies Qln(t)µl(t)ŝl(t) ≤ µ2
max,∀l ∈ Ln−L′

n(t). Therefore,

0 ≤ |Ln|µ2
max− E[

∑
l∈Ln−L′

n(t)

Qln(t)µl(t)ŝ
loc
l (t)|sbn(t) = 0]

(79)

Adding (79) to (78), we obtain E[
∑
l∈Ln

Qln(t)∆t(Wl)|E0]

≤2|Ln|µ2
max +

∑
l∈Ln

Qln(t)(νl + αlνbn)

−
∑
l∈Ln

Qln(t)E[µl(t)ŝlocl (t)|sbn(t) = 0] (80)

=2|Ln|µ2
max − δ/2

∑
l∈Ln

Qln(t) (81)

(81) follows from (70), by substituting αl := δ/2νbn +
νl/(µ̄bn − νbn).

Using law of total expectations, from (81) and (74), we
obtain∑

l∈Ln

Qln(t)E[∆t(Wl)|Q(t)] ≤ Kn − ϵn
∑
l∈Ln

Qln(t) (82)

where Kn = 2|Ln|µ2
max and ϵn = min{δ/2, δ′}

Proof of Theorem 7. We use proof by induction. Firstly,
lim supt→∞

∑t
τ=0

∑
f∈F E[qfm(τ)]/t <∞ is true for m = r

from Lemma 5.
Now suppose lim supt→∞

∑t
τ=0

∑
f∈F E[qfm(τ)]/t < ∞

for all the nodes m in the path from n to r excluding n, i.e.,
Pn−{n}. In the following, we will show the same is true for
m = n and complete the induction.

Consider the function V locn (t) :=
∑
l∈Ln

W 2
l (t), where

Wl(t) is defined in the proof of Lemma 6. We consider the
conditional drift E[∆t(V

loc
n )|Q(t)], which equals∑

l∈Ln

E[(∆t(Wl))
2 + 2Wl(t)∆t(Wl)|Q(t)]

≤ K ′
n + 2

∑
l∈Ln

{Wl(t)−Qln(t)}E[∆t(Wl)|Q(t)]

+ 2
∑
l∈Ln

Qln(t)E[∆t(Wl)|Q(t)] (83)

where, K ′
n =

∑
l∈Ln

E[(Alr(t)+αlAbnr (t))2]+(1+α2
l )µ

2
max.

(83) follows since (∆t(Wl))
2 ≤ (Alr(t) + αlA

bn
r (t))2 + (1 +

α2
l )µ

2
max.

Since Wl(t + 1) −Wl(t) ≤ Alr(t) + αlA
bn
r (t), the middle

term in (83) is ≤ 2
∑
l∈Ln

{Wl(t)−Qln(t)}(νl+αlνbn), which
is a linear function of Qp(n)(t) := {qfm(t)}f∈F,m∈Pn−{n}.
Let g(Qp(n)(t)) := 2

∑
l∈Ln

{Wl(t) − Qln(t)}(νl + αlνbn).
The final term is ≤ 2Kn − 2ϵn

∑
l∈Ln

Qln(t) from Lemma 6.
Hence,

E[∆t(V
loc
n )|Q(t)] ≤ K ′

n + 2Kn + g(Qp(n)(t))

− 2ϵn
∑
l∈Ln

Qln(t) (84)

Let K ′′
n := K ′

n+2Kn. Proceeding similarly as in the proof
of Lemma 4.1 in [29], we obtain

lim sup
T→∞

∑T−1
t=0

∑
l∈Ln

E[Qln(t)]
T

≤ K ′′
n

2ϵn

+ lim sup
T→∞

∑T−1
t=0 E[g(Qp(n)(t))]

2Tϵn
(85)

By supposition, the term on RHS of (85) is less than infinity.
The induction is complete.
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