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Abstract—This paper provides capacity results for multi-user
mm-wave hybrid-beamforming, and presents optimal joint beam
allocation and user scheduling algorithms. We characterize the
downlink capacity of a practical system with quantized analog
beamforming code-books under the constraint that users cannot
be scheduled at the same time if they are closer together than
a beam width in angle. We show that the capacity region is
determined by a small number of linear inequality constraints.
We also present capacity-achieving scheduling algorithms that
provide beam allocations guaranteeing that user rate require-
ments are met within each resource block. In particular, we
propose “sand-filling” algorithms that are provably optimal and
which have linear complexity. Intuitively, our schemes can be
viewed in terms of filling containers with coloured sand, in such
a way that the colours at any given height do not conflict with
the colours in the other containers at the same height, where
the containers represent the RF chains (i.e. the beamforming
resources), and the coloured sand represents the users (and their
rate requirements). We show a numerical example where the
capacity of our scheme is 82% higher than a traditional resource
partitioning scheme.

I. INTRODUCTION

Millimeter wave (mmWave) communications offers enor-
mous potential for delivering high data rate services to large
numbers of mobile users in 5G and 6G cellular networks.
Achieving wide area coverage in this band requires beam-
forming from antenna arrays with large numbers of elements,
due to the small element sizes at mmWave. The resulting
beams are comparatively narrow, providing signal gain as well
as the opportunity to spatially multiplex multiple beams to
serve multiple users simultaneously. The number of beams is
determined by the number of RF chains, which is significantly
fewer than the number of antenna elements, in practical
hybrid-beamforming mmWave implementations. This is due
to a number factors including the physical size of amplifiers,
their heat dissipation, and the need to lock carrier frequencies
across all RF chain mixers. Multiplexing the beams (of each
RF chain) will result in inter beam interference if the user
equipments (UEs) are not sufficiently separated in angle.
Consequently, there is a significant user-scheduling challenge
when a cell contains large numbers of UEs, non-uniformly
located in angle around the base station, and where each UE
has their own data rate requirements.

In this paper we consider the question of cell capacity on
the downlink, for a practical hybrid-beamforming system that
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can form a given number of simultaneous beams (one for each
RF chain, using analog beamforming, which has been shown
to be close-to-optimal in single user scenarios [1]), and where
there is a quantized beamforming code-book that divides the
transmission angle range into a finite number of segments
along which each beam can be pointed. Beam-steering in
this way is a practical scheme for mmWave channels, that
requires minimal feedback compared to digital beamforming
which requires full channel state information. We provide
capacity results under the constraint that UEs in neighbouring
segments that are closer than a beam width in angle cannot
be scheduled at the same time, in order to avoid interference
between the scheduled UEs. We show that the capacity region
can be determined by a linear set of constraints, as opposed
to computing a convex hull of exponentially many points
(corresponding to all the beamforming and UE scheduling
choices). We also propose two optimal scheduling algorithms
(that achieve capacity), in a number of important general
practical scenarios.

In [2]–[4], the multi-user multi-input multi-output (MU-
MIMO) cellular user-selection problem with a quantized
beamforming codebook was tackled from a signal-to-
interference ratio (SIR) perspective. They considered a sce-
nario with limited channel state information (CSI) feedback,
and semi-randomly selected users that achieve an overall high
SIR. These approaches did not consider UE rate requirements,
nor provide any rate guarantees.

A network utility maximization approach to user scheduling
was taken in [5], [6], where ZF based hybrid beamforming
for MU-MIMO was considered in [5], and SU-MIMO hybrid
beamforming was considered in [6] where UEs were scheduled
in time sequence. Both works involve solving a convex opti-
mization along with a max-weight scheduling problem in each
slot. The max-weight scheduling problem in [5] is NP-hard
and hence convex relaxation and heuristic algorithms were
proposed. In contrast, the single user max-weight problem was
shown to have a pseudo-convex structure in [6] for the case
of low side-lobes.

Sum rate optimization for mmWave link scheduling was
used in [7], [8]. In [7] a graph based approach was taken,
where scheduling of interfering links was avoided and a max-
weight scheduling approach was proposed for a fixed number
of RF chains. In [8] user scheduling and analog beam selection
was done from a code-book, where the UE rate included the
interference from simultaneous beams. Due to NP-hardness
of the problem, a heuristic user-clustering based scheduling
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algorithm was proposed.
Scheduling in multi-cell scenarios was considered in [9]–

[13]. In [9], [10], inter-cell interference was avoided by
scheduling beams in adjacent cells by constructing an interfer-
ence graph. The objective of minimizing the number of slots
required to satisfy SINR requirements subject to the limit on
RF chains was considered for mmWave backhaul links in [11],
where greedy sub-optimal solutions were proposed due to the
hardness of the problem. In [12], slot number minimization
was done subject to rate requirements and constraints on
transmit power and RF chains. A heuristic solution based
on user-clustering was proposed due to the hardness of the
problem. In [13], a heuristic algorithm is proposed for sum
rate maximization with hybrid beamforming.

The problem of scheduling a given set of tasks (with a
conflict graph) on a fixed number of processors has been
considered in operations research as the Mutual Exclusion
Scheduling (MES) problem (e.g. see [14]). The problem is
known to be NP-hard in general (and for many classes of
graphs). Polynomial time algorithms exist for only a few
classes of conflict graphs such as trees and forests [14]. The
MES problem with unit size indivisible jobs was considered in
[15], for perfect circular arc graphs, and obtained polynomial
time algorithms. The beamforming setup we consider in this
paper can be modeled as a perfect circular graph, however, as
we will see, a major difference from [15] is that our model has
real valued infinitely divisible jobs (i.e. the rate requirements
of UEs), which necessitates a completely different solution.
We prove, perhaps somewhat surprisingly, that this problem
can be solved in linear time.

In this paper, we present a capacity-achieving scheduling
algorithm that provides beam allocations guaranteeing that
UE rate requirements are met within each resource block.
The combinatorics of allocating K beams at a time, across
N segments, and meeting the real-valued rate requirements
of all users, appears to be, on the face of it, prohibitive.
Our “sand filling” approach to scheduling, however, has linear
complexity. Intuitively, our approach can be viewed in terms
of filling containers with coloured sand, in such a way that the
colours at any given height do not clash with the colours in
the other containers at the same height; where the containers
represent the RF chains (i.e. the beamforming resources),
and the coloured sand represents the UEs (and their rate
requirements).

We present two sand-filling algorithms, both of which have
linear complexity. Our first algorithm takes a greedy approach
to filling the containers, and we show it to be optimal in two
important, practically relevant scenarios. Our second algorithm
modifies the greedy approach and it is optimal across a
much wider range of practically relevant scenarios. Finally,
we provide simple capacity characterizations for the practical
scenarios where we have established the optimality of our
algorithms. We show that the capacity is characterized by
only N + 1 linear inequalities even though there can be
exponentially many possible beam-segment/UE combinations.
We also show a numerical example where the capacity of our
scheme is 82% higher than a traditional resource partitioning
scheme.

II. SYSTEM MODEL AND CAPACITY REGION

In this section, we present our mmWave MU-MIMO base
station model and introduce the neighboring segment schedul-
ing constraints. We define the notion of feasible sets and
then characterize the capacity region achievable by scheduling
feasible sets.

Fig. 1. Illustration with θ = 360◦, N = 24, I = 1, K = 4.

A. System Model

Consider a mmWave gNB (Next Generation Node Base) in
a single cell scenario communicating on the down-link with
a set of user equipments (UEs) distributed within an arc of
angular-width θ degrees. We consider the practical case for
mmWave communications, where the gNB RF front-end has
a limited number of RF chains, and uses analog beamforming
(one for each RF chain) to serve up to K UEs simultaneously,
where K is the number of RF chains. Note that analog
beamforming has been shown to be close-to-optimal in single
user scenarios [1]). We consider the practical case of having
a quantized beamforming code-book, where the 360◦ plane
from the gNB is divided into N non-overlapping segments.
The mid-point angles of these segments are the N possible
directions in which the K analog beams can be directed. See
Fig. 1 which shows an example for θ = 360◦. We label the
segments 0 to N − 1 going in the clockwise direction. The
UEs located in a segment n are served by the beam pointing
in the direction of segment n (which is the beam closest
in direction to these UEs). Beam-steering in this way is a
practical scheme for mmWave channels, that requires minimal
feedback compared to digital beamforming which requires full
channel state information.

Depending on the beam-width, a beam can be wider than a
single segment which leads to significant interference (for the
UEs) in the adjacent segments. A beam pointing in segment
n causes significant interference to (the UEs in) 2I segments,
{n±I mod N, . . . , n±1 mod N}, i.e. I adjacent segments
in each direction. In Fig. 1, I = 1. Hence, it is necessary to
avoid scheduling two UEs that are closer than I segments. We
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assume that UEs that are more than I segments apart, have
nearly orthogonal channels and suffer only negligible residual
interference due to the separation in angular domain and
the directional nature of mmWave and THz communication
channels.

Note that the beamwidth is independent from the number
of RF chains. It is determined only by the number of antenna
elements. Also, the number of segments (or equivalently, the
number of beamforming vectors in the codebook) is indepen-
dent of both the number of RF chains and the beamwidth. It is
a system design choice that is only limited by the resolution of
the phase shifters used in the analog beamforming hardware.

We consider the general situation where there can be
multiple UEs within each segment, and where those UEs are
scheduled in a time-shared manner when a beam is pointed
to the given segment. We denote the instantaneous rate of
UE u, to be Ru bits/sec1. This is the physical layer rate at
which the gNB sends data to a UE u while it is scheduled.
The instantaneous rate will naturally change over time due
to fading of the wireless channel, and as with all resource
allocation algorithms, whenever the rates change appreciably
the scheduling algorithm will be re-run. For each resource
allocation block, the UE rate Ru is a fixed constant.

We denote the flow rate of UE u, to be νu bits/sec. This is
the long-term target rate at which data of UE u is served by
the gNB (i.e. averaged over time, including the times when it
is not scheduled). It is also a fixed constant.

For a segment n, we define the set of m adjacent segments
in the clockwise direction, including n, using the following
notation: [n : n + m] := {n + x mod N, ∀x = 0, . . . ,m}
for each n ∈ {0, . . . , N − 1} and m ∈ Z+. We call this a
clockwise neighbour set.

In this setup, a set S ⊆ {0, . . . , N − 1} of segments can be
scheduled without interference between beams, if and only if,

|S| ≤ K (1)

S − {n}
⋂

[n− I : n+ I] = ∅, ∀n ∈ S. (2)

The number of simultaneous beams are limited by the number
of RF chains, which is given in the RF chains constraint (1).
The constraint (2) ensures that selected segments are separated
from each other enough, such that there is no interference, and
can therefore feasibly be scheduled at the same time.

Definition 1. A set S ⊆ {0, . . . , N − 1} is called a feasible
set if it satisfies (1) and (2).

Let S denote the set of all feasible sets. With no loss of
generality2, we consider the case where maxS∈S |S| = K.

B. Capacity Region

Let Un denote the set of UEs that lie in segment n. Hence,
U :=

⋃N−1
n=0 Un is the set of all the UEs. Since UEs within

1This rate can include a margin for residual interference. For example, the
Ru’s could be determined based on the signal-to-interference ratio allowing
for interference from a beam pointing I + 1 segments away.

2Note that when maxS∈S |S| < K, at most K̄ := maxS∈S |S| segments
can be scheduled at a given time and the remaining RF chains are redundant.
As such, in this situation, we would simply set K := K̄, ignoring the excess
RF chains.

a segment are time-shared, at any given time each segment
will only have a single scheduled (i.e. active) UE. Let V :=
{{un}N−1

n=0 : un ∈ Un} be the set of all possible UE scheduling
choices (i.e. choices of N UEs, with the constraint of having
only a single UE per segment).

For a given feasible set of scheduled segments, S ∈ S, and a
UE choice V ∈ V , the corresponding rate vector rS,V ∈ R|U |

+

is defined as

rS,V := [RuIu∈V In∈S : u ∈ Un, n ∈ {0, . . . , N − 1}] (3)

where I is the indicator function. Let

R := {rS,V }S∈S,V ∈V (4)

be set of all the rate vectors.
We define the capacity region of flow rate vectors achievable

by scheduling (i.e. time-sharing) of the feasible sets and UE
choices as

C := Conv(R) (5)

where Conv(·) is the convex-hull.
In this paper, we consider the following two key challenges;

1) To determine whether a given flow rate vector ν = [νu]u∈U
is achievable, i.e. ν ∈ C, and 2) To provide an optimal beam
association and resource allocation scheme which will achieve
a given ν ∈ C, which we do by determining time fractions fS
for feasible sets S which achieve ν.

Determining whether a given ν is in C is not straightforward
due to the number of feasible sets under consideration, i.e. the
size of the set S. Note that S has in the order of

∑K
k=0

(
N
k

)
elements due to the combinatorial nature of feasible sets. In
this paper, we provide optimal resource allocation algorithms
with complexity linear in N . As such, our algorithms show
that by exploiting the inherent structure in the problem, it is
not necessary to perform a brute force enumeration of all the
feasible sets.

III. PROBLEM FORMULATION

In this section, we formulate the minimum time allocation
problem as a linear program and show that it provides an
equivalent characterization of the capacity region. We then
show how to generate time allocations from a solution of the
linear program.

We define a load vector τ := [τn]
N−1
n=0 , where τn :=∑

u∈Un
νu/Ru is the utilization of segment n, which is the

sum of the utilizations of all UEs in Un. Segment n must
be scheduled at least τn proportion of the time (subject to
the scheduling constraints (1), (2)) to meet its load. Within
segment n, the UEs u ∈ Un are time-shared proportional to
νu
Ru

. We note that each u ∈ Un is scheduled for at least νu
Ru

net proportion of the time (which leads to a flow rate of at
least νu) provided that segment n’s load is met.

It is useful to consider an illustration of beam allocations to
the segments, achieved by time-sharing of feasible sets, shown
in Fig. 2. The horizontal axis represents the segments, and the
vertical time axis of interval [0, 1) represents the proportion of
time. There are N = 24 segments in this example (directions
in which the beams can be pointed). The figure shows a
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scenario with K = 4 RF chains (which can simultaneously
create 4 beams). The allocation of these beams is shown with
the shaded regions. Feasible sets are shown in the horizontal
rows (labelled on the right hand side of the figure), where
the shading shows the segments that are in that feasible set.
For example, in feasible set S1, corresponding to the interval
[0, fS1

), the four RF chains (forming 4 beams) are allocated to
segments 0, 4, 8 and 20. Clearly, these segments are separated
more than I segments apart, and therefore do not interfere
with each other, rendering them feasible.

Fig. 2. Resource Allocation using LP (6)-(7) for N = 24, I = 1,K = 4.

In this example, at time fS1
, there is a switch to a new

feasible set S2 = {0, 5, 9, 20}, in which two of the segments
continue to be served (0 and 20), while the other two beams
switch to segments 5 and 9. Note that each horizontal line in
the figure is a switching time, when at least one beam switches
to a different segment.

The challenge in determining whether a given flow rate
vector ν is achievable involves considering time (proportion)
allocations fS for feasible sets S ∈ S, in order to meet the
utilization requirements for each segment. For example, if we
consider segment 0 in Fig. 2, it is scheduled across two feasible
sets S1, S2. In order to meet segment 0’s load τ0, the total
proportion of time fS1

+ fS2
must be greater than or equal to

τ0. The same requirement holds for all other segments, noting
that many of them are scheduled across more than two feasible
sets.

We seek the most efficient feasible sets and time allocations
to achieve a given load vector τ . Consider the problem of
minimizing the total proportion of time (system utilisation)∑
S∈S fS required to meet all the segment utilisation require-

ments, as stated in the following linear program (LP):

min
fS≥0

∑
S∈S

fS (6)

s.t.∑
S:n∈S

fS ≥ τn, ∀n = 0, . . . , N − 1 (7)

where, fS is the proportion of time allocated to a feasible set
S. The objective in (6) is to minimize the total utilized time
proportion

∑
S∈S fS . The constraints in (7) require that the

proportion of time allocated to a segment n is greater than or

equal to τn. We call LP (6)-(7) the minimum time allocation
problem, with the understanding that time is normalized so
that a value of 1 refers to the base station resource being fully
utilized.

The optimal solution {f∗S}S∈S has the minimum possible
total time proportion, f∗ :=

∑
S∈S f

∗
S , to meet the segment

utilization requirements [τn]N−1
n=0 , or equivalently to achieve the

given flow rate vector ν. Since the proportion of time must
always be less than unity, a question arises as to the physical
interpretation if the optimal value f∗ is greater than 1. The
following theorem shows that if f∗ > 1 then the flow rate
vector ν is outside the capacity region C, and hence cannot
be achieved by any allocation scheme.

Theorem 1. ν ∈ C if and only if f∗ ≤ 1.

Proof. See Appendix A.

From Theorem 1, it is clear that the LP (6)-(7) is an
equivalent capacity characterization. It is also clear that the
solution to the minimum time allocation problem yields an
optimal resource allocation scheme for scheduling beams,
which will achieve any ν ∈ C. As mentioned previously, in a
segment n, the UEs in Un can be scheduled by time-sharing.

The LP (6)-(7) is challenging to solve due to its dimension-
ality, i.e. the number of variables involved. Note that the LP
contains |S| variables, which can grow as O(min(NK , 2N )).
For moderately large values of N and K, the resource allo-
cation problem involves solving a potentially highly complex
LP.

In this paper, we propose optimal linear-time algorithms
which solve the minimum time allocation problem in practical
scenarios. These will be presented in Section IV and Sec-
tion VII. We first discuss the practical implementation issue
of how to relate proportions of time to actual time allocations
in a resource block.

A. Allocation of time in a resource allocation block

In this section, we take a solution of the minimum time
allocation problem (from the previous section, which deals
with proportions of time), and show how to generate actual
time allocations in a resource allocation block.

As illustrated in Fig. 2, a disjoint interval in [0, 1) of
length f∗S can be allocated to each feasible set S, under a
solution of the minimum time allocation problem. Note that
the allocations for sets lie in [0, f∗) and the rest of the interval
[f∗, 1) is empty. Feasible allocations for a time interval [0, t)
can be produced by scaling the solution by t. We use this
scaling approach to address allocation of time intervals to
segments (and UEs) in a resource allocation block.

To be concrete, assume that time resource allocation blocks
of duration B seconds are available to be scheduled. During
each resource allocation block, time intervals are allocated to
each segment by the scheduler. To get the time allocations in
the time resource block, we can scale time intervals produced
by the factor B. All time intervals allocated to beams in a
resource block are completed by time f∗B, (as can be seen
from Fig. 2) leaving an unused time interval of duration (1−
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f∗)B for additional tasks, such as beam search or channel
estimation.

The approach to resource allocation described above is
sensible when data packet arrivals occur in a regular man-
ner with uniform inter-arrival times between packets. When
packets arrive irregularly with a constant arrival rate (e.g., as
a stationary random process), the packet queues can get large
due to traffic bursts. Providing higher flow rates by dedicating
more time resources reduces the queueing latency.

One option for the random packet arrival case is to scale
the time allocations by B/f∗. In this case, all the time
intervals allocated to beams are completed at time B, the
end of the resource block. This leaves no extra time for
additional tasks, such as beam search or channel estimation
which must then take place outside of the resource blocks used
for data transmission. This proposed time scaling provides
more than sufficient time to each beam in each resource block,
thereby reducing the queueing latency experienced by flows,
as compared to a time scaling by B, which was used in the
regular packet arrivals case.

More generally, one can scale time proportions by a factor c
seconds, where B < c ≤ B/f∗, which provides f∗c seconds
for data transmission and B−f∗c seconds for additional tasks.
Suppose that packet arrivals of a flow (corresponding to a UE)
occur as a Poisson process, then the resulting M/D/1 queuing
process for the flow has an expected stationary queue length
of 1

2
B
c (

c
B − 1)−1. When c is reduced, more of the resource

block can be used for beam searching or channel estimation at
the cost of higher queueing latency experienced by the traffic
flows.

Whether for regular or random packet arrivals, the time
allocation found by solving the LP (6)-(7) tells the base station
how to allocate time to the beams to meet the user traffic flow
demands in the system.

B. Lower Bounds

Below we derive two lower bounds on the optimal value
f∗ of LP (6)-(7), i.e., minimum allocation time. We will show
that one of these bounds is tight in most cases which are of
practical interest. We provide linear time optimal algorithms
that are based on achieving this lower bound.

For the sake of convenience, we define τA :=
∑
i∈A τi for

each A ⊆ {0, . . . , N − 1}. We introduce two key parameters
τavg and τ̃max (where˜indicates that it is a clockwise neighbour
set load as opposed to an individual segment load) defined as
follows:

τavg :=

∑N−1
n=0 τn
K

(8)

τ̃max := max
n∈[0:N−1]

τ[n:n+I]. (9)

Lemma 1. The optimal value of LP (6)-(7), f∗, is greater
than or equal to max{τavg, τ̃max}.

Proof. See Appendix A.

IV. GREEDY SAND-FILLING ALGORITHM

In this section, we present our first algorithm to solve the
minimum time allocation LP (6)-(7), and we make a “sand-

filling” interpretation of the algorithm’s operation. We first
describe an alternate way to graphically depict the beam
allocations, compared to the depiction we presented in Fig. 2.

In Fig. 3(a) we provide a representation from the point of
view of the RF chains, using K columns; each column k
corresponding to an RF chain. In this diagram, a label and
colour are used to represent the segment to which the RF
chain is allocated. The vertical axis represents time and the
horizontal lines represent switching times, just as with Fig. 2.
If two beams switch segments at the same time, the horizontal
lines will align. For example, in Fig. 3(a), the first RF chain is
pointing a beam in segment 0 initially, and switches to segment
1 at time h0. It is clear that Fig. 2 and Fig. 3(a) are equivalent
representations of a beam schedule.

(a) (b) (c)

Fig. 3. (a) An illustration of the Greedy Sand-Filling algorithm. (b) An
illustration of the Kth column when τN−2 = 0. (c) An illustration of the
Kth column when τN−2 = 0 with proposed sand-shifting.

The sand filling analogy of Fig. 3(a) is as follows. Treat
each container k ∈ {1, . . . ,K} as having a height of T =
max{τ̃max, τavg} and a base of unit area. Treat each segment
n ∈ [0 : N − 1] as having τn units of colored sand, where the
color of the sand is unique to n. The sand-filling algorithm
greedily fills the containers with sand, in the increasing order
of segments, and in the increasing order of containers. Once a
segment n’s sand is finished, the filling continues with n+1’s
sand. Similarly, once a container k is full, the filling continues
in container k+1. Note that the container height T is sufficient
since the total volume of the containers KT is greater than
or equal to the volume of sand

∑N−1
n=0 τn = Kτavg, since

T = max{τ̃max, τavg}.
This Greedy Sand-Filling algorithm can be used to generate

a (potentially optimal) solution to the linear program (6)-(7)
with objective value T as follows. Consider the height hn
where a segment n’s sand-filling ends (which is a switching
point). A subset of segments Sn is identified by the colors
of sand across the containers just below height level hn.
By construction, there will be at most N + 1 such subsets,
say {Si}Ni=0, by letting hN = T . These generated subsets
are associated with disjoint height intervals, sub-intervals
of [0, T ), e.g. the interval [0, hI+1) (and [hI+1, hN−m)) is
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associated with SI+1 (and SN−m resp.) in Fig. 3(a). Let fSi

denote the length of the interval for a subset Si.

Definition 2. We say that the Greedy Sand-Filling algorithm
is optimal if and only if the generated solution {fSi

}Ni=0 is an
optimal solution of LP (6)-(7).

The generated solution {fSi
}Ni=0 is an optimal solution of

the linear program (6)-(7) provided that all the subsets Si
generated by the algorithm are feasible sets, i.e. Si ∈ S. If each
subset Si is a feasible set, then the feasible solution {fSi}Ni=0

to (6)-(7), generated by Greedy Sand-Filling, has an objective
value

∑N
i=0 fSi

= T = max{τavg, τ̃max} (since the interval
[0, T ) is partitioned to obtain Si’s). By Lemma 1, this solution
is optimal. We state this result as the following Lemma 2.

Lemma 2. The Greedy Sand-Filling algorithm is optimal if the
set of segments scheduled at each height h ∈ [0, T ), excluding
switching points, is a feasible set.

Note that under Greedy Sand-Filling, an RF chain serves
a segment completely before switching to a new segment (or
beam pointing direction), as seen in Fig. 3(a). This means that
Greedy Sand-Filling minimizes the switching cost associated
with changing beam directions.3 Note that for the LP solution
in Fig. 2, segment 4 (and also segments 4, 9, 13 & 19) are
scheduled in two disjoint time intervals, which requires two
beam direction switchings for these segments. This does not
happen in our Greedy Sand-Filling approach.

We show in this paper that the Greedy Sand-Filling algo-
rithm, or the modified version of it (the Generalized Sand-
Filling algorithm in Section VII), generates optimal allocations
in most practical cases. To do this, we introduce the necessary
notation to describe the algorithms mathematically.

Definition 3. We define position p ∈ {1, . . . ,K} × [0, T ) at
a height h in a container k as the tuple p = (k;h).

Definition 4. The magnitude |p| ∈ [0,KT ) of a position p is
defined as |p| := (p(1) − 1)T + p(2), where p(i) is the ith
component of p.

Note that the magnitude |p| is the total amount of sand
needed to reach position p. We say that p1 ⋚ p2 if and only
if |p1| ⋚ |p2| respectively. Hence, we order the positions p
in the ascending order of magnitudes |p|. Also note that each
level in each container has a unique position p and magnitude
|p|. Hence, |·| is a bijective mapping from {1, . . . ,K}×[0, T )
to [0,KT ). We denote the inverse mapping from magnitudes
to positions by | · |inv .

Definition 5. We define the displacement, p⊕d, of a position
p to the right by a distance d ≥ 0 as p ⊕ d := ||p| + d|inv .
Similarly, the displacement to the left, p⊖ d := ||p| − d|inv .

Note that |p ⊕ d| − |p| = d and p ⊕ d ≥ p. Since |p| is
the total amount of sand required to reach position p, p ⊕ d

3Note that in Fig. 3(a), the top segment load of each container overflows
into the bottom of the next container, and this may appear to imply that there
are extra beam switches taking place. However, this is not the case when
considering that the subsequent resource allocation block can circularly shift
the RF chains one container to the left, which will ensure a continuity of
segment loads across the resource block boundary.

is the unique position obtained from p by adding d units of
sand. Similarly, p⊖ d is the unique position obtained from p
by removing d units of sand.

The Greedy Sand-Filling algorithm can now be described
by the pseudo-code presented in Algorithm 1. In the following
sections, we discuss the application of the Greedy Sand-Filling
algorithm, i.e. where it leads to optimal allocations.

Algorithm 1 Greedy Sand-Filling algorithm
1: T = max{τ̃max, τavg} // Container height
2: p = (1; 0). // Position at height 0 in container 1
3: for n = 0 to N − 1 do
4: Allocate the positional range from p to p ⊕ τn to

segment n. // Sand-filling for n.
5: p := p⊕ τn.
6: end for

V. APPLICATIONS OF THE GREEDY SAND-FILLING
ALGORITHM

In this section, we present two important practical scenar-
ios 1) Balanced Scenario and 2) Partial Angular Coverage
Scenario. We show that the Greedy Sand-Filling algorithm
is optimal in both of these scenarios. In the next section,
we consider the only remaining case of general Unbalanced
Scenarios.

A. Balanced Loads: τavg ≥ τ̃max

We define a scenario to be balanced if the τ is such that
τavg ≥ τ̃max. The following theorem shows that the Greedy
Sand-Filling algorithm is optimal (solves the LP (6)-(7)) for
all balanced scenarios.

Theorem 2. The Greedy Sand-Filling algorithm (Algorithm 1)
is optimal if τavg ≥ τ̃max. Further, f∗ = T = τavg .

Proof of Theorem 2. Since τavg ≥ τ̃max, it is clear that T =
τavg by definition. We will show below that for an arbitrary
segment n ∈ [0, N−1], that n’s allocation does not overlap (in
height) with allocation of any of [n+1 : n+I]. The optimality
of the algorithm follows from Lemma 2, which also implies
that f∗ = T = τavg .

Let (k; t) for some 1 ≤ k ≤ K, t ∈ [0, T ) be the starting
position sn of an arbitrary segment n ∈ [0 : N − I − 1]
in Algorithm 1. Note that the segments [n + 1 : n + I] are
allocated between positions sn ⊕ τn to sn ⊕ τ[n:n+I]. Since
τ[n:n+I] ≤ τ̃max ≤ T , it follows that sn⊕τ[n:n+I] ≤ (k+1; t),
i.e. the allocations of segments [n+1 : n+I] can only lie above
height t + τn in container k and below height t in container
k + 1. Hence, n’s allocation from (k; t) to (k; t) ⊕ τn does
not overlap in height with any of [n + 1 : n + I], for each
n ∈ [0 : N − I − 1].

We now consider the other case n ∈ [N − I,N − 1]. Note
that all the containers are full since KT = Kτavg =

∑N−1
i=0 τi.

Hence, sN−1 ⊕ τN−1 = (K;T ). It is now clear that the
allocation of segments [n : N − 1] lie between positions
(K;T−τ[n:N−1]) and (K;T ) in the same container and hence
no overlap. The allocations of [N : n+I] (i.e. {0, . . . , n+I−
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N}) lie between positions (1; 0) and (1; τ[N :n+I]). There can
be no overlap since T − τ[n:N−1] ≥ τ[N :n+I], which is due to
T = τavg ≥ τ̃max ≥ τ[n:N−1] + τ[N :n+I].

B. Scenario with Partial Angular Coverage θ < 360◦

In this section, we present another important special case
where the Greedy Sand-Filling algorithm is optimal. This case
can be either balanced (τavg ≥ τ̃max) or unbalanced (τavg <
τ̃max).

Consider a setup where the angular coverage region of
a gNB is a sector of width θ, and not the full circle, i.e.
θ < 360◦, as shown in Fig. 4. There are N ′ = 22 segments
in Fig. 4 which is less than N = 24 segments for the
full circle in Fig. 1. The framework for the full circle case
developed in the previous section also applies to quite general
sectored scenarios, such as the one depicted in Fig. 4, using
the following theorem.

ϕ

θ

Fig. 4. Illustration with θ < 360◦ coverage, i.e., not full circle.

Theorem 3. The Greedy Sand-Filling algorithm (Algorithm 1)
is optimal if τ[N−I:N−1] = 0.

Proof. For segments n ∈ [0 : N − I − 1], the proof from the
same arguments as given for Theorem 1. Since the τn = 0
for other segments n ∈ [N − I : N − 1], no allocation is
needed.

Theorem 3 shows that the Greedy Sand-Filling algorithm
is always optimal when the final I consecutive segments have
zero load. This is the case in Fig. 4 where I = 1 and the 2
shaded consecutive segments have no UEs. We propose that
the clock-wise labelling of segments from 0 to N − 1 start
with the first segment after the shaded region which ensures
that the final segments N − I to N − 1 have a zero load.

More generally, let ϕ denote the angle subtended by a beam,
i.e., the beam-width. We will now use Theorem 3 to show that
the Greedy Algorithm with the proposed labelling is optimal
for any sector of angle θ ≤ 360− ϕ/2.

Note that ϕ
2I+1 is the angle subtended by a single segment,

since beam-width ϕ is the angle subtended by 2I + 1 con-
secutive segments under our model. Hence, the number of
segments, N , in a full circle is given by

N = (2I + 1)
360◦

ϕ
(10)

and the number of segments, N ′, in an arc of angle θ by

N ′ = (2I + 1)
θ

ϕ
(11)

For any arc such that θ ≤ 360◦ − ϕ/2, we obtain

N ′ ≤ (2I + 1)
360◦

ϕ
− (I + 0.5) (12)

< N − I (13)

and hence the Greedy Sand-Filling algorithm is optimal by
Theorem 3. We state this now as a Corollary of Theorem 3.

Corollary 1. The Greedy Sand-Filling algorithm is optimal
for any arc of angle θ ≤ 360◦ − ϕ/2 with the segment labels
for the coverage arc going from 0 to N ′(< N − I).

Since the beam-width ϕ in mmWave systems is small (due
to the large number of antenna elements), the Greedy Sand-
Filling algorithm applies to a wide range of arc coverage
scenarios and practically all sector based implementations,
from Corollary 1.

VI. UNBALANCED SCENARIOS

In this section, we consider sand-filling for general unbal-
anced scenarios. We prove that Greedy Sand-Filling algorithm
is not optimal in some unbalanced scenarios, and motivate the
development of our Generalized Sand-Filling algorithm that
will be presented in the next section.

In general, it is not true that greedy sand-filling is optimal
for all unbalanced scenarios, where τ̃max > τavg . To see
how the Greedy Sand-Filling algorithm can fail, consider the
example illustrated in Fig. 3(a) but with τN−2 replaced with
the value 0 and the other loads staying the same. The resulting
greedy sand-filling allocation is illustrated in Fig. 3(b); seg-
ment N − 1 now starts immediately after the completion of
segment N − 3. Note that this means that the allocation of
segment N − 1 now overlaps in height with segment I − 1
(which is at the same height in column 1), and the greedy
sand-filling solution is therefore infeasible.

In the next section, the Generalized Sand-Filling algorithm
will be developed based on the shifting of starting positions
to obtain a feasible allocation. Note that a feasible allocation
for the above example can be constructed from the infeasible
greedy solution by shifting the starting position of N − 1 as
shown in Fig. 3(c). The Generalized Sand-Filling algorithm
(that we will provide in Section VII) shifts coloured sand
starting positions in a similar manner, with the same container
height T = max{τavg, τ̃max}.

Unfortunately, even the Generalized Sand-Filling algorithm
is not guaranteed to find a feasible solution for all unbalanced
scenarios, i.e. for arbitrary τ . This is because there are cases
(i.e. τ ) for which f∗ > max{τ̃max, τavg} = T as stated in the
following Theorem 4, e.g. For τ = [3, 2, 3, 2, 3, 0, 5, 0, 3, 2]
with 3 RF chains, τavg = 23/3, τ̃max = 8, whereas f∗ = 8.5.
More general examples are constructed for in the proof of
Theorem 4, which can be found in the Appendix.

Theorem 4. For K ≥ 2 and I ≥ 2, if I+1 < N ≤ (2K−1)I
then there exist τ ∈ RN+ such that f∗ > max{τavg, τ̃max}.
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Proof. See Appendix B.

The Sand-filling allocations (greedy or generalized) cannot
be optimal for these examples since the container height is
fixed at T in both versions of the algorithm, whereas the
optimal value f∗ > T . Both sand-filling algorithms terminate
with a final allocation of sand which fits into the K containers.
The condition T ≥ τavg ensures that there is always sufficient
container space for the sand. However, the feasibility of the
resulting beam segment schedule is not guaranteed. Indeed,
when f∗ > T , the beam segment schedule obtained by the
algorithms (Greedy or Generalized) must be infeasible.

In the next section, we will define a Generalized Sand-
Filling algorithm and show that it is optimal for any N greater
than the bound in Theorem 4; i.e. for

N ≥ (2K − 1)I + 1, (14)

Consequently, f∗ = T = τ̃max in unbalanced scenarios when
(14) also holds. We will call (14) the large number of segments
condition.

The large number of segments condition does not limit prac-
tical implementation of the algorithms for mm-Wave hybrid
beamforming architectures. As discussed in Section I, in such
architectures, the number of antenna elements at the gNB is
large (which leads to narrow beam-widths ϕ) and the number
of RF chains, K, is small. Therefore, the product (K − 0.5)ϕ
will be small. In this situation, the large number of segments
condition will hold due to the following Lemma 3, which
shows that (14) holds if (K − 0.5)ϕ ≤ 360◦. For example,
if K = 10 RF chains, (14) holds for beam-widths ϕ up to
38◦.

Lemma 3. If the beam-width ϕ and the number of RF chains
K are such that (K − 0.5)ϕ ≤ 360◦, then the large number
of segments condition in (14) holds.

Proof. Recall that 360◦ = Nϕ/(2I + 1) (from Section V-B)
under our model. Hence we obtain (K−0.5)ϕ ≤ Nϕ/(2I+1).
Hence N ≥ (2K − 1)I + (K − 0.5).

Since N is an integer and K ≥ 1, N ≥ (2K−1)I+1.

VII. GENERALIZED SAND FILLING ALGORITHM FOR
UNBALANCED SCENARIOS

In this section, we present our Generalized Sand-Filling
algorithm, which is a modified version of greedy sand-
filling. We will show that it is optimal in all unbalanced
scenarios satisfying the large number of segments condition
N ≥ (2K − 1)I + 1.

We use T = τ̃max for the container height since τ̃max >
τavg in unbalanced scenarios. With no loss of generality, we
assume that

τ̃max = τ[0:I] (15)

and that K ≥ 2 and N ≥ 2I + 2, since 1) K = 1 is always
a balanced scenario, and 2) if N ≤ 2I + 1, then there is
effectively only 1 useful RF chain (i.e. maxS∈S = 1), and
if the problem is re-formulated with K = 1, we see that the
scenario is balanced and the Greedy Sand-Filling algorithm is

optimal. In fact, scenarios with N ≤ 2I+1 violate our earlier
assumption that maxS∈S = K (see Footnote 2 on page 3).

The following is the intuition behind our Generalized Sand-
Filling algorithm. Since τ̃max > τavg in this case, the total
volume of the containers, Kτ̃max, is greater than the total sand∑N−1
n=0 τn = Kτavg . Hence, with the Greedy Sand-Filling

algorithm (which can result in infeasible allocations in this
case, due to segment allocation conflicts between containers,
as mentioned previously), there is an empty space at the top of
the final container, of height K(τ̃max−τavg) = KT−τ[0:N−1].

Our key new idea in the Generalised Sand-Filling algorithm
is the concept of black sand. This sand does not correspond to
beam allocations, and is simply a filler. We denote the amount
of black sand by ψ. The maximum amount of black sand we
can use is given by the amount of empty space at the top of the
final container after greedy sand-filling. We will show how to
pour black sand into the containers in such a way that segment
allocation conflicts between containers do not occur. In other
words, we will pour it between sands of different colours,
which shifts colours up (and to the right), in such a way that
the resulting final allocation is feasible. The empty space in
the final container is therefore reduced, and has effectively
been used to resolve conflicts. We will provide specific details
in the next section, but first we present three cases to illustrate
the operation of black sand pouring and the resultant shifting
of colored sand.

Fig. 5 shows examples for three different amounts of black
sand, in each case showing the first two columns of a larger
system with I = 6. Fig. 5(a) shows the greedy sand-filling
solution when no black sand is used. Fig 5(b) shows an
example where ψ = τ0 − τ7 and the sand has been poured in
between the 6-th and the 7-th segments, shifting all segments
above 6 upwards. In this case the top of the 7th segment
aligns with the top of the 0 segment in the first column. Note
that it is not possible to pour any more black sand between
these two segments because a conflicting overlap would then
exist between segment 7 and segment 1 in column 1. Fig 5(c)
shows an example where more black sand is added into the
system. In this example, the total amount of black sand added
is ψ = τ[0:5] − τ[7:12], which includes the initial amount of
τ0−τ7 between segments 6 and 7 (as above). Additional black
sand of height τ[1:2]−τ[8:9] is poured between segments 7 and
8, shifting all segments above 7 upwards. In this case, 9 is at
its upper limit, due to the potential for conflict with segment 3
in column 1. The remaining black sand of height τ[3:5]−τ[10:12]
is added between segments 9 and 10. For larger values of ψ,
additional amounts of black sand can be poured in a similar
fashion between higher index segments, always taking account
of any potential conflicts.

As illustrated, the black sand is inserted by shifting (i.e.
increasing) the starting positions of segments in [I + 1 : N −
I − 1]. It is clear that there are upper bounds on the shifted
starting positions. We denote the upper bound for segment i,
ui, for i = 0, . . . , N−I−1. Each segment is shifted upwards
by ψ unless that causes a conflict, in which case they are
shifted up to their upper bound ui. Let si denote the starting
position of i under greedy sand-filling, which corresponds to
ψ = 0. For ψ > 0, the new starting position for segment i,
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(a) ψ = 0 (b) ψ = τ0 − τ7 (c) ψ = τ[0:5] − τ[7:12]

Fig. 5. Illustration of Black Sand Pouring and starting position upper bounds.

denoted by sψi is

sψi := min(si ⊕ ψ,ui). (16)

Hence, if ui is known, the shifted allocation after pouring any
amount of black sand ψ > 0 can be calculated using (16).

In the Subsection VII-A, we determine the upper-bounds
{ui}N−I−1

i=0 in general. In Subsection VII-B, we provide our
Generalized Sand-Filling algorithm, which chooses ψ equal
to K(T − τavg), which is the height of the empty space in
container K after greedy sand-filling. We remark here that
the purpose of black-sand pouring is not necessarily to help
the segments in [0 : N − I − 1]. For example, in Fig 5(a),
segment 7 does not conflict with segment 0, yet our choice
of ψ may result in it shifting up, as illustrated in Fig 5(b).
Indeed, the results in Section V-B (the partial angular coverage
scenario) indicate that there will be no conflicts for segments
in [0 : N−I−1] with greedy sand-filling, even in unbalanced
scenarios. However, conflicts can occur for the final segments
[N − I : N − 1] with the segments [0 : I] in container 1, due
to wraparound. We will show that the pouring of black sand,
thereby shifting segments [I + 1 : N − I − 1], provides the
necessary flexibility for shifting the final segments [N − I :
N − 1] to resolve these conflicts.

A. Starting position upper bounds on shifting

We now determine the upper-bounds {ui}N−I−1
i=0 in the

general-case which enable the computation of the shifted
starting positions (and hence allocations) for any τ . Since the
allocations of segments 0 to I are fixed in the first column
and do not shift, for i = 0, . . . , I , we define

ui := si =

1;

i∑
j=0

τj − τi

 (17)

As illustrated in Fig. 5, the upper bound for a segment i ∈
[I + 1 : N − 1− I] occurs either 1) due to direct blocking by
i−I , (e.g. i = 7 in Fig. 5(b), where I = 6), or 2) due to indirect
blocking by a segment i+ l− I , where i+ l− I blocks all the
segments in [i : i+l] for some l ∈ [0 : I−1]. In Fig. 5(c) where

I = 6, i = 10 is indirectly blocked by segment 6 = i+ l − I
(i.e. l = 2). From the figure, note that u6 = (1; τ[0:5]) and
u10 = (2; τ[0:5]) ⊖ τ[10:12] = ui+l−I ⊕ (T − τ[i:i+l]). For a
segment i ≥ I + 1, suppose that i + l ≤ N − I − 1 for each
l ∈ [0 : I − 1], we define the upper bound ui as

ui := min
l∈[0:I−1]

ui+l−I ⊕
(
T − τ[i:i+l]

)
(18)

where l = 0 in the RHS corresponds to the bound if i is
directly blocked by i − I , and l ∈ [1 : I − 1] corresponds to
indirect blocking by i+ l− I . The minimum is taken over all
possible cases l, since all conflicts (i.e. no overlap conditions)
must be satisfied for feasibility.

In general, l must be less than or equal to N − I − 1− i so
that the term i+l which appears in the RHS of (18) is less than
or equal to N − I−1, since only segments [I+1 : N − I−1]
are under consideration for upper bounds. Hence, we define
the upper bounds ui for i = I + 1 to N − I − 1 inductively
as follows.

ui := min
l∈[0:min{I−1,N−I−1−i}]

ui+l−I ⊕
(
T − τ[i:i+l]

)
. (19)

The shifted allocations for i ∈ {0, . . . , N − I − 1} are now
fully defined since the upper bounds uj are defined. Note that
N − I − 1 ≥ I + 1 due to our assumption that N ≥ 2I + 2.

We now present the following Lemma, which shows that the
black sand pouring procedure (and the shifting) does not lead
to conflicting overlaps among the segments in [0 : N − I−1].
Following that, we will provide our Generalized Sand-Filling
Algorithm and discuss the shifting of final segments [N − I :
N − 1].

Lemma 4 (Shifting Lemma). For any 0 ≤ ψ ≤ KT−τ[0:N−1],
with the new starting positions given by (16), the allocation
of a segment n ∈ [I + 1 : N − I − 1] does not overlap with
the allocation of m ∈ [n− I : n− 1] .

Proof. From Lemma 8 (in Appendix C), we have

|ui+1| − τ[0:i] ≥ |ui| − τ[0:i−1] (20)

for each i ∈ [0 : N − I − 1]. Note that |si| = τ[0:i−1]

is the magnitude of sand-filled starting position si. Hence,
|ui|−τ[0:i−1] is the minimum shift (i.e. amount of black sand)
required for segment i to reach its upper bound ui. Hence from
(20), we observe that

1) If ψ is not large enough for segment i to reach its upper
bound, then all the segments j > i also do not reach their
upper bounds, i.e. if ψ < |ui| − τ[0:i−1] then sψj < uj
for each j ≥ i.2) If ψ is large enough for segment i to reach its upper
bound, then all the segments j < i also reach their upper
bounds, i.e. if ψ ≥ |ui| − τ[0:i−1] then sψj = uj for each
j ≤ i .

We now apply the above observations, 1) and 2), to prove
the lemma. Consider an arbitrary pair of segments n ∈ [I+1 :
N − I − 1] and m ∈ [n− I : n− 1].

Suppose first that sψm < um. Since m < n, from 1) we
obtain sψn = sn ⊕ ψ and sψm = sm ⊕ ψ. Let sψm be (k;h);
Then sψn = (k;h) ⊕ τ[m:n−1] (since |sψn | − |sψm| = τ[m:n−1]).
Therefore, sψn ≥ (k;h)⊕τm (since τ[m:n−1] ≥ τm), and sψn ≤
(k + 1;h) ⊖ τn (since τ[m:n−1] ≤ τ[n−I:n−1] ≤ τ̃max − τn).
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Hence for n’s allocation, the starting position is sψn ≥ (k;h)⊕
τm and the ending position is sψn⊕τn ≤ (k+1;h). No overlap
is possible since n’s allocation lies above m’s allocation in
container k and it lies below m’s starting height h in the next
container k + 1.

Suppose instead that sψm = um. Let sψm = um = (k;h).
By definition of un,

sψn ≤ un ≤ um ⊕ (T − τ[n:m+I])

≤ (k + 1;h)⊖ τn. (21)

If sψn = un, then |sψn | − |sψm| = |un| − |um| ≥ τ[m:n−1]

from (20). Suppose instead sψn < un, which implies sψn =
sn⊕ψ = sm⊕(τ[m:n−1]+ψ). Since sm⊕ψ ≥ sψm, we obtain
|sψn | − |sψm| ≥ τ[m:n−1]. Thus, in either case, |sψn | − |sψm| ≥
τ[m:n−1] ≥ τm, from which it follows that sψn ≥ (k;h)⊕ τm.
Also, sψn ⊕ τn ≤ (k + 1;h) from (21). Hence, no overlap
is possible just as in the previous case, which completes the
proof.

B. Generalized Sand Filling Algorithm using Black Sand
pouring

Algorithm 2 Generalized Sand Filling Algorithm
1: T = max{τ̃max, τavg}.
2: p = (1; 0) and sj = (1; 0) for j = 0, . . . , N − 1.
3: for i = 0 to N − 1 do // Calculate the greedy sand-filling starting

positions of segments
4: si = p.
5: p := p⊕ τi.
6: end for
7: ψ := KT − τ[0:N−1] // Amount of black sand chosen to be the

maximum value
8: for i = I + 1 to N − I − 1 do
9: sψi := min(ui, si ⊕ ψ) // Shifted starting position cannot be

greater than the upper bound ui.
10: Allocate the positional range from sψi to sψi ⊕ τi to

segment i.
11: end for
12: for i = N − I to N − 1 do // Shift the final segments by ψ.
13: sψi := si ⊕ ψ
14: Allocate the positional range from sψi to sψi ⊕ τi to

segment i.
15: end for

Our Generalized Sand-Filling Algorithm is presented in
Algorithm 2. In lines 2-6, the initial starting positions si are
computed according to the greedy sand-filling criterion. Of
course, we know that this may not provide a feasible solution
in this unbalanced scenario, in which case black sand will
be required. The algorithm chooses an amount of black sand
equal to the height of the empty space in the final container (in
line 7). In other words, it sets ψ to be KT − τ[0:N−1]. In lines
8-11, the new starting positions sψi for i = I+1, . . . , N−I−1
are computed according to the shifts induced by black sand
pouring, as described in the previous section. By Lemma 4,
no conflicts occur among the segments in [0 : N − I − 1].

C. Shifting of final segments in [N − I : N − 1]

The black sand used between the segments in [0 : N−I−1]
in Algorithm 2 is |sψN−I−1|−|sN−I−1|, which is smaller than
or equal to ψ. The remaining black sand (i.e. ψ−|sψN−I−1|+
|sN−I−1|) is added between segments N − I − 1 and N − I ,
which results in all the segments in i ∈ [N − I : N −1] being
shifted up by ψ (from their greedy sand-filled positions), in
lines 12-15 of Algorithm 2.

The following Lemma shows that there are no conflicting
overlaps for the final segments [N − I : N − 1] with the
segments [0 : I − 1] (which are in the clock-wise direction).

Lemma 5. In Algorithm 2, the allocation of a segment n ∈
[N − I : N − 1] does not overlap with the allocation of any
segment m ∈ [n+ 1 : n+ I].

Proof. Since the amount of black sand ψ equals the height of
empty space, the new ending position of N − 1 shifts to the
top of the final container, i.e. sψN−1 ⊕ τN−1 = (K;T ). It is
now clear that the new allocations of segments [n : N − 1] lie
between positions (K;T − τ[n:N−1]) and (K;T ), i.e. above
height T − τ[n:N−1] in the same (final) container, and hence
no overlap. The allocations of [N : n+I] (i.e. {0, . . . , n+I−
N}) lie between positions (1; 0) and (1; τ[N :n+I]), i.e. below
height τ[N :n+I] in the first container. There can be no overlap
since T − τ[n:N−1] ≥ τ[N :n+I], which is due to T = τ̃max ≥
τ[n:n+I] = τ[n:N−1] + τ[N :n+I].

D. Proof of Optimality

To show that the shifted allocation from Algorithm 2 is
optimal, it remains to check that there are no conflicts between
any segment n ∈ [N − I : N − 1] and the segments in [n −
I : n − 1], i.e. there are no conflicting overlaps for the final
segments in the anti clock-wise direction. This will be shown
in the following Theorem 5 by making use of the large number
of segments condition. The following lemma provides the key
result needed for this step.

Lemma 6. If N ≥ (2K−1)I+1 and K ≥ 2, then uN−2I ≥
(K; 0).

Proof. If N ≥ (2K − 1)I +1 then N − 2I ≥ (2K − 3)I +1.
From Lemma 8 (in Appendix C), uN−2I ≥ u(2K−3)I+1. By
(60) in Lemma 10 (in Appendix C), taking k = K − 1, we
have that u(2K−3)I+1 ≥ (K; 0).

Lemma 6 says that the upper bound for N − 2I is in the
final container K (which we note cannot be container 1, since
K ≥ 2 is assumed in the lemma) when the large number of
segments condition holds. This fact is crucial in the proof of
Theorem 5 below for unbalanced scenarios.

Theorem 5. The Generalized Sand-Filling algorithm (Algo-
rithm 2) is optimal for any τ ∈ RN+ given N ≥ (2K−1)I+1.

Proof. For the balanced case τavg ≥ τ̃max, note that ψ = 0,
since ψ = K(T − τavg) and T = max{τavg, τ̃max}. In this
case, since there is no shift (i.e. no black sand), Algorithm 2
is equivalent to Algorithm 1. Hence, the proof follows from
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Theorem 2. In the unbalanced case that we consider below,
we assume without any loss of generality that K ≥ 2.4

For the unbalanced case with ψ > 0, Lemma 4 shows that
there is no conflicting overlaps among segments in [0 : N −
I − 1]. Lemma 5 shows that no conflicting overlaps of final
segments n ∈ [N − I : N − 1] with the clock-wise segments
[n : n + I]. We now show that the allocation of a segment
n ∈ [N − I : N − 1] does not overlap with a segment m ∈
[n− I : n− 1].

If m ≥ N − I , no overlap is possible since the allocations
of m and n both completely lie in the final container K (as
the sand of [N−I : N−1] is shifted together to the top of the
final container after black sand pouring). We now consider the
other case m ∈ [n− I : N − I−1]. In this case, um ≥ (K; 0)
by Lemma 6, since m ≥ N − 2I . If sψm = um, there is
no overlap since allocations of both m and n lie in the final
container K.

If instead sψm < um, then |sψm| = τ[0:m−1] + ψ from
Observation 1) in the proof of Lemma 4. This implies that
|sψm| = KT − τ[m:N−1], since ψ = KT − τ[0:N−1]. Hence we
obtain

sψm = (K;T )⊖ τ[m:N−1] (22)
= (K;T − τ[n:N−1])⊖ τ[m:n−1] (23)

= sψn ⊖ τ[m:n−1] (24)

since sψn = (K;T − τ[n:N−1]) from line 12 of Algorithm 2.
Let sψn = (K;h). Hence, sψm ≥ (K − 1;h)⊕ τn from (24)

(since τ[m:n−1] ≤ τ̃max − τn ≤ T − τn). This shows that any
part of m’s allocation in container K − 1 is above the height
of n’s allocation in container K. Any part of m’s allocation in
container K lies below n’s allocation by construction. Thus,
no overlap is possible.

VIII. CAPACITY RESULTS

In this section, we present capacity characterization results
arising from our sand-filling algorithms. We also illustrate the
capacity gain of our approach over traditional interference
avoidance schemes (specifically resource partitioning), with a
numerical example.

Recall that the capacity region C of flow rate vectors was
defined in (5) as the convex hull of rate vectors in the set R,
defined in (4), which is a set with a large number of elements,
exponential in the number of segments, N . We now use
Theorems 1 and 5 to provide a much simpler characterization
of C in terms of the flow rate vectors ν = [νu]u∈U . Recall
that τn =

∑
u∈Un

νu/Ru for each n = 0, . . . , N − 1, where
νu (and Ru) is the flow-rate (and the instantaneous rate) of
UE u, and Un is the set of all the UEs in segment n.

A. Capacity Region when N ≥ (2K − 1)I + 1

Theorem 6 provides a full characterization of the capacity
region with only N+1 linear inequality constraints when N ≥
(2K−1)I+1. Clearly, (25)-(26) are necessary conditions, and

4Recall that K = 1 always corresponds to a balanced scenario since
τavg = τ[0:N−1] ≥ τ̃max.

Fig. 6. Numerical Example with Resource Partitioning.

we have shown that they are sufficient when N ≥ (2K−1)I+
1.

Theorem 6. If N ≥ (2K − 1)I + 1, then the capacity region
C is the set of ν ∈ R|U |

+ such that∑
i∈[n:n+I]

∑
u∈Ui

νu
Ru

≤ 1, n = 0, . . . , N − 1 (25)

∑
u∈U

νu
Ru

≤ K (26)

Proof. (25) is equivalent to τ̃max ≤ 1 and (26) is τavg ≤
1. From Theorem 5, f∗ ≤ 1. The result now follows from
Theorem 1.

B. Numerical Example
We now use Theorem 6 to demonstrate the advantage of

our capacity achieving sand-filling algorithms, over traditional
resource partitioning based wireless interference avoidance
approaches, using a numerical example with K = 10 RF
chains, N = 20 segments, and I = 1. This is illustrated in
Fig. 6, where the segment index is shown around the outside
(in green), and the number of UEs in each segment is shown
inside the segment (in black). For this example, we consider a
case where all UEs are allocated the same amount of time, and
as such receive a flow rate, νu = τRu, where τ is the constant
of proportionality, the same for all users5. The value of τ is
maximised on the capacity region boundary, which results in
the highest flow rates.

Recall that our sand-filling approach avoids inter-beam
interference by carefully managing the constraint of selecting
segments that are appropriately separated in angle. In this
subsection we compare our sand-filling algorithm to a tra-
ditional resource partitioning approach that avoids inter-beam
interference by dividing the segments into two groups of 10
alternating segments (one segment for each RF chain/beam),
and time-sharing between the two groups. The two groups
are shown in blue and pink in Fig. 6. The capacity region
for our sand filling approach in this numerical example, is
given by 11τ ≤ 1, from Theorem 6, where the bottle neck
constraint is (25) which occurs on segment n = 4 (and
also on segments n = 1, 2, 3, 6, 8, 9, 10, 13, 14, 15, 17, 19).6

5This example can also model the case of having a single user in each
segment, where the users have differentiated time requirements.

6Note that the constraint (26) in this case is 101τ < 10.
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This can be seen by observing that segment n = 4 has
τ[n:n+I] = 10τ + 1τ = 11τ which is the maxN−1

n′=0 τ[n′:n′+1]

over all segments. The capacity region for the traditional
approach is given by 20τ ≤ 1, which is determined by the
need to serve the bottle neck segments in each group, which
are n = 2 (or equivalently n = 4) for the blue group and
n = 13 (or equivalently n = 15) for the pink group.

This shows that the capacity of our sand-filling scheduling
algorithm is ( 1

11 − 1
20 )/

1
20 = 82% larger compared to the

traditional partitioning scheme.

C. Capacity Region when N < (2K − 1)I + 1

Theorem 6 characterizes the capacity region when the large
number of segments condition, N ≥ (2K − 1)I + 1, holds.
We claim that the large number of segments condition should
always hold in a practical deployment of a mmWave base
station with narrow beams, since the product of beamwidth and
number of RF chains is small (see Lemma 3). Nevertheless,
we can provide achievable flow rate regions, even when N <
(2K − 1)I + 1, by using Theorems 1-3, as we now show.

For K ≥ 2, we note that N must actually lie in [K(I +
1) : (2K − 1)I] for K RF chains to be useful. As noted in
Footnote 2, let K̄ := max {n ≥ 1 : n(I + 1) ≤ N}, and if
K̄ < K then K should be reset. More specifically, if N <
K(I + 1) (before resetting) then maxS∈S |S| = K̄ < K and
hence only K̄ RF chains are useful. As in Footnote 2, we
therefore reset K to be K̄, so that all K RF chains are used.
The reset causes N to be greater than or equal K(I + 1) and
K to be equal to maxS∈S |S|.

For the regime N ∈ [K(I+1) : (2K−1)I] (in which K RF
chains are useful), we are able to characterize two achievable
flow rate regions as follows. Theorem 7 provides an achievable
rate region which follows from our Theorem 2 on balanced
scenarios.

Theorem 7. For N ∈ [K(I + 1) : (2K − 1)I], a given ν ∈
R|U |

+ is in the capacity region C if∑
i∈[n:n+I]

∑
u∈Ui

νu
Ru

≤ 1

K

∑
u∈U

νu
Ru

, n = 0, . . . , N − 1 (27)

∑
u∈U

νu
Ru

≤ K (28)

Proof. (27) implies the balanced loads, i.e. τavg ≥ τ̃max, and
(28) implies τavg ≤ 1. From Theorem 2, f∗ ≤ 1. The result
is now immediate from Theorem 1.

Theorem 8 provides an achievable flow rate region, which
follows from our Theorem 3 on the coverage arc case. Here,
the scenario can be either balanced or unbalanced.

Theorem 8. For N ∈ [K(I + 1) : (2K − 1)I], a given ν ∈
R|U |

+ is in the capacity region C if
∑
n∈[j:j+I−1]

∑
u∈Un

νu
Ru

=
0 for some j ∈ [0 : N − 1] and∑

i∈[n:n+I]

∑
u∈Ui

νu
Ru

≤ 1, n = 0, . . . , N − 1 (29)

∑
u∈U

νu
Ru

≤ K (30)

Proof. Since
∑
n∈[j:j+I−1]

∑
u∈Un

νu
Ru

= 0, it is given∑
n∈[j:j+I−1] τn = 0 for some j ∈ [0 : N − 1]. Re-label

the segments such that i becomes i− j − I mod N for each
i ∈ [0 : N − 1]. Under the new labelling, τ[N−I:N−1] = 0
(which corresponds to τ[j:j+I−1] under the original labelling).
(28) is equivalent to τ̃max ≤ 1 and (29) is τavg ≤ 1. From
Theorem 3, we obtain, f∗ ≤ 1. The result is now immediate
from Theorem 1.

We also note that when N ≤ 2I + 1, maxS∈S = 1, so
only 1 RF chain is useful. In this scenario, the capacity is
characterized by a single linear inequality:

∑
n∈[0:N−1] τn ≤ 1

or equivalently
∑
u∈U

νu
Ru

≤ 1, which is clearly the capacity
achievable by TDMA. This is also a special case of our results
when K = 1, since all the sand is filled in one container, the
container height T = f∗ =

∑
n∈[0:N−1] τn.

Note that while Theorems 7 and 8 establish feasible flow
rate regions when N ∈ [K(I +1) : (2K− 1)I], it is yet to be
established what the full capacity region is. We have shown
that f∗ can be greater than τ̃max > τavg in this regime, hence
extra constraints are needed to fully characterize the capacity
region.

IX. CONCLUSIONS

In this paper we have provided capacity results for a
mmWave system with quantized analog beamforming code-
books. We have shown that the capacity region is determined
by at most N +1 linear inequality constraints, under the large
number of segments condition, in spite of the fact that the
number of feasible beam scheduling sets is exponential in N .
We have shown that the large number of segments condition
applies to practical mmWave systems. We also presented
capacity-achieving scheduling algorithms that provide beam
allocations guaranteeing that UE rate requirements are met
within each resource block. In particular, we provided provably
optimal “sand filling” algorithms which have complexity that
is linear in N and I .

Finally, we note that the size of the beamforming codebook,
N , is a design parameter that controls the resolution of beam-
pointing. Generally speaking, we would like N to be as
large as possible, since this maximizes the capacity region,
however implementation constraints will limit it in practice.
Such constraints include the resolution of the phase shifters,
limitations in the feedback channel rate, and the overhead in
beam acquisition. We have provided insights into the tradeoff
between N and the time taken for beam acquisition, when
we observed that it will be necessary in practice to operate at
less than the full capacity to provide time within the resource
allocation block to do beam acquisition.

APPENDIX A: PROOFS OF THEOREM 1 AND LEMMA 1

Proof of Theorem 1. Firstly, we show that ν ∈ C implies
f∗ ≤ 1.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3399760

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



13

By definition of convex hull, there exists a := [aS,V ] ∈
R|S|×|V|

+ such that
∑
S∈S,V ∈V aS,V = 1 and satisfying

ν =
∑
S∈S

∑
V ∈V

aS,V rS,V . (31)

Note that τn =
∑
u∈Un

νu/Ru. Hence from (3),

τn =
∑
u∈Un

∑
S∈S

∑
V ∈V

aS,V In∈SIu∈V (32)

We define Sn := {S ∈ S : n ∈ S} for each n ∈ [0 : N − 1]
and Vu := {V ∈ V : u ∈ V } for each u ∈ U . Also, let
fS =

∑
V ∈V aS,V for each S ∈ S. Hence from (32),

τn =
∑
S∈Sn

∑
u∈Un

∑
V ∈Vu

aS,V (33)

=
∑
S∈Sn

fS (34)

where (34) follows since V =
⋃
u∈Un

Vu for each n ∈ [0 :
N − 1], because each V ∈ V contains exactly one u ∈ Un
for each n. Hence, {fS}S∈S is a feasible solution of LP (6)-
(7). Since

∑
S∈S

∑
V ∈V aS,V = 1, we obtain

∑
S∈S fS = 1.

Hence f∗ ≤ 1.
For the other case, we show that f∗ ≤ 1 implies ν ∈ C.
Let gS := f∗S/f

∗ for each S ∈ S. Note that
∑
S∈S gS = 1

and
∑
S∈Sn

gS ≥ τn for each n ∈ [0 : N−1] from LP (6)-(7).
For n ∈ [0 : N − 1] such that |Un| > 0, we define

b(u) :=
νu
Ru∑

u∈Un

νu
Ru

=
νu
Ruτn

(35)

for each u ∈ Un.
Since V = {[un]N−1

n=0 : un ∈ Un} by definition, we obtain

N−1∏
n=0

(∑
u∈Un

b(u)

)
︸ ︷︷ ︸
= 1 from (35)

=
∑
V ∈V

∏
u∈V

b(u) (36)

For each S ∈ S, V ∈ V , we define

bS,V := gS
∏
u∈V

b(u) (37)

ν′ :=
∑
S∈S

∑
V ∈V

bS,V rS,V (38)

From (37) and (36),
∑
V ∈V bS,V = gS for each S ∈ S. Hence,∑

S∈S
∑
V ∈V bS,V =

∑
S∈S gS = 1, which implies ν′ ∈ C.

We will now show that ν′ is element-wise greater than or
equal to ν which concludes the proof.

Consider an arbitrary UE u ∈ U , which lies in seg-
ment n ∈ [0 : N − 1], i.e. u ∈ Un. We have ν′u =∑
S∈S

∑
V ∈V bS,VRuIn∈SIu∈V =

∑
S∈Sn

∑
V ∈Vu

RubS,V .
Hence from (37),

ν′u =
∑
S∈Sn

gSRu
∑
V ∈Vu

∏
u′∈V

b(u
′) (39)

=

(∑
S∈Sn

gS

)
︸ ︷︷ ︸

≥ τn

b(u)Ru︸ ︷︷ ︸
νu/τn

≥ νu (40)

where (40) follows since Vu = {[um]N−1
m=0 : um ∈ Um∀ m ̸=

n,& un = u} which implies
∑
V ∈Vu

∏
u′∈V b

(u′) =

b(u)
∏N−1
m=0,m ̸=n

(∑
u′∈Um

b(u
′)
)
= b(u) ( ∵

∑
u′∈Um

b(u
′) =

1 from (35)).

Proof of Lemma 1. For 1), note that by summing the con-
straints of LP (6)-(7), we obtain

N−1∑
n=0

∑
S:n∈S

fS ≥
N−1∑
n=0

τn (41)

Since |S| ≤ K for each S ∈ S, each S appears at most
K times in the LHS of the above sum. Hence, we obtain
K
∑
S∈S fS ≥

∑N−1
n=0 τn, which implies f∗ ≥ τavg .

Let Sm ⊆ S denote the set of all feasible sets which contain
a segment m ∈ [0 : N − 1]. By definition of a feasible set,
each S contains at most one element from the set [n : n+ I].
Hence, the sets {Sm}m∈[n:n+I] are mutually exclusive. By
summing the constraints (7) for m ∈ [n : n + I], we obtain∑
m∈[n:n+I]

∑
S∈Sm

fS ≥ τ[n:n+I]. From mutual exclusivity
of Sm’s, we obtain

∑
S∈S fS ≥ τ[n:n+I]. Since the choice of

n is arbitrary,
∑
S∈S fS ≥ τ̃max. Hence, f∗ ≥ τ̃max.

APPENDIX B: PROOF OF THEOREM 4

Proof. If I + 1 < N ≤ (2K − 1)I then N = k′I + ℓ for
some k′ ∈ [1 : 2(K − 1)], ℓ ∈ [1 : I]. Depending on whether
k′ is even or odd, one of the following two cases holds: 1)
N = 2K ′I + ℓ (i.e. k′ = 2K ′) for some K ′ ∈ [1 : K − 1],
ℓ ∈ [1 : I] or 2) N = (2K ′ − 1)I + ℓ (i.e. k′ = 2K ′ − 1) for
some K ′ ∈ [1 : K − 1], ℓ ∈ [1 : I].

Consider case 1) N = 2K ′I+ℓ (for K ′ ≥ 1). we define the
loads for the segments i in [0 : N − 1] as follows. τi = 0.5 if
i is a multiple of I and τi = 0 otherwise. Note that τ̃max = 1
and τavg = (K ′ + 0.5)/K < 1 (since K ′ ≤ K − 1), by
construction. We now show that f∗ > 1.

(a) First case (b) Second case

Fig. 7. Illustration of allocation for constructed examples

By way of contradiction, suppose that f∗ = 1. Consider the
allocation under an optimal solution of LP (6)-(7). Without
loss of generality, the time allocations of segments 0, I under
the solution can be arranged on column k = 1 as shown in
Fig. 7(a). The ordering in this column 1 fixes the allocation of
the rest of the segments, as we will show. For K ′ ≥ 2, segment
2I must occupy the interval [0, 0.5) since τ2I = 0.5, and
segment I occupies the interval [0.5, 1). It follows that the next
segment, 3I , must occupy [0.5, 1). Without loss of generality,
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place segments 2I, 3I in column 2, as shown in Fig. 7(a).
For K ′ ≥ 3 this inductive allocation pattern for segments
(2k − 2)I, (2k − 1)I continues for k = 3, . . . ,K ′, where
(2k − 2)I occupies interval [0, 0.5) and (2k − 1)I occupies
interval [0.5, 1) in column k, as illustrated in Fig. 7(a).

For the final segment N − ℓ = 2K ′I , note that interval
[0.5, 1) is not available because (2K ′ − 1)I occupies this
interval in column K ′ (true when K ′ = 1 as well as when
K ′ ≥ 2). Also interval [0, 0.5) is not available for segment
N − ℓ since this interval is occupied by segment 0 and N − ℓ
interferes with segment 0. Hence, no interval is available for
N − ℓ whereas τN−ℓ = τ2K′I = 0.5. Hence, its not possible
to do all the allocations in the interval [0, 1), which is a
contradiction. Therefore, f∗ must be larger than 1.

For the other case, 2) N = (2K ′−1)I+ℓ, we first deal with
the trivial case K ′ = 1. Let τi = 1 for each i ∈ [0 : N − 1].
Note that I +1 < N ≤ 2I , hence every segment i with every
other segment in [0 : N−1]−{i}. Hence, f∗ ≥ τ[0:N−1] = N ,
whereas τavg = τ[0:N−1]/K ≤ N/2 and τ̃max = τ[0:I] = I .
Hence, f∗ > max{τavg, τ̃max}.

For the general case, K ′ ≥ 2, (hence N−ℓ ≥ 3I) we define
the loads for i ∈ [0 : N − ℓ] as follows. τ0 = 0.5, τI = 0.5,
τi = 0.5 if i − 1 is an multiple of I , τN−ℓ = 0.5 and 0
otherwise. As with the previous case, τ̃max = 1 and τavg =
(K ′ + 0.5)/K < 1 (since K ′ ≤ K − 1), by construction.
We now show that f∗ > 1. Proceeding similarly as before,
the allocations for segments 0, I are arranged in column 1
(as shown in Fig. 7(b)) which fixes the inductive allocation
pattern for segments (2k− 3)I +1, (2k− 2)I +1 in columns
k = 2, . . . ,K ′ (as shown in Fig. 7(b)).

For the final segment N − ℓ = (2K ′ − 1)I (which must be
greater than (2K ′ − 2)I + 1 since I ≥ 2), note that interval
[0.5, 1) is not available because this interval is occupied by
(2K ′ − 2)I + 1 in column K ′ (which interferes with N −
ℓ = (2K ′ − 1)I). Also, interval [0, 0.5) is not available for
N − ℓ since this interval is occupied by segment 0 in column
1 (which also interferes with N − ℓ). Hence, no time interval
in (0, 1] is available for N − ℓ, whereas τN−ℓ = 0.5. Hence,
f∗ must be larger than 1.

Remark: In our beamforming problem, the columns refer
to RF chains. The constructed examples in the proof of the
Theorem 4 provide a specific allocation of segments to RF
chains. Other allocations are also possible but do not change
our conclusions. For the example illustrated in Fig. 7(a), we
have only used the first K ′ RF chains, and then found that
there was not enough time for the final segment, even with
RF chains K ′ + 1, . . . ,K completely unused. In fact, the
allocation of segments 0, 1, . . . (2K ′−1)I to RF chains could
have used more than K ′ RF chains, by moving the allocations
horizontally across RF chains, with no effect on the scheduled
feasible sets. As such, this would not solve the problem of not
having enough time for the final segment.

APPENDIX C: INTERMEDIATE RESULTS ON UPPER
POSITION BOUNDS

Lemma 7. Assume N ≥ 2I+2. For an i ∈ [I+1 : N−I−1],
let l ∈ [0 : min{I − 1, N − I − 1 − i}] be the index l such

that ui = ui+l−I ⊕
(
T − τ[i:i+l]

)
, then

ui+l′ = ui+l−I ⊕
(
T − τ[i+l′:i+l]

)
(42)

for each l′ = 0, . . . , l.

Proof. We use proof by contradiction. Suppose that (42) holds
for l′ = 0, . . . , k − 1, but not for l′ = k ≤ l, i.e. k is the
smallest l′ ∈ [0 : l] for which (42) does not hold. Clearly
k ≥ 1 since it is given that

ui = ui+l−I ⊕
(
T − τ[i:i+l]

)
(43)

By definition of ui+k in (19), ui+k ≤ ui+k+m′−I ⊕(
T − τ[i+k:i+k+m′]

)
for all m′ ∈ [0 : min{I − 1, N − I −

1− i− k}]. Taking m′ = l − k, we obtain that

ui+k ≤ ui+l−I ⊕
(
T − τ[i+k:i+l]

)
(44)

By the supposition above, the inequality must be strict, hence

ui+k < ui+l−I ⊕
(
T − τ[i+k:i+l]

)
(45)

Also by definition of ui+k in (19), there must exist a m ∈ [0 :
min{I−1, N−I−1− i−k}] such that ui+k = ui+k+m−I⊕(
T − τ[i+k:i+k+m]

)
. Let α := k +m− I . Hence,

ui+k = ui+α ⊕
(
T − τ[i+k:i+α+I]

)
(46)

Note also that

α+ I ≤ N − I − 1− i, (47)

since I + α = k +m, and m ≤ N − I − 1− i− k.
Case 1: I − k ≤ m ≤ I − 1

Since α = k + m − I , this case is equivalent to 0 ≤ α ≤
k − 1. From the supposition that (42) holds for each l′ ∈
[0 : k − 1], it must hold for α. Hence, we obtain ui+α =
ui+l−I⊕

(
T − τ[i+α:i+l]

)
Substituting ui+α in (46), we obtain

(48) by re-arranging terms in the sum τ[i+k:i+α+I]+τ[i+α:i+l]
as τ[i+α:i+α+I] + τ[i+k:i+l], which is possible since i + α <
i+ k ≤ i+ l ≤ i+ α+ I . Thus,

ui+k = ui+l−I ⊕
(
T − τ[i+α:i+α+I]

)
⊕
(
T − τ[i+k:i+l]

)
.

(48)

Then, using T ≥ τ̃max ≥ τ[i+α:i+α+I], we obtain

ui+k ≥ ui+l−I ⊕
(
T − τ[i+k:i+l]

)
(49)

which contradicts (45).
Case 2: 0 ≤ m ≤ I − k − 1

Since α = k +m− I , this case is equivalent to k ≤ α+ I ≤
I − 1. From (47), α+ I ≤ min{I − 1, N − I − 1− i}. From
the definition of ui in (19), we have that ui ≤ ui+m′−I ⊕(
T − τ[i:i+m′]

)
for all m′ ∈ [0 : min{I − 1, N − I − 1− i}].

Take m′ = α+ I , we have

ui ≤ ui+α ⊕
(
T − τ[i:i+α+I]

)
.

But ui+α = ui+k ⊖ (T − τ[i+k:i+α+I]) from (46). Thus,

ui ≤ ui+k ⊖ τ[i:i+k−1]

< ui+l−I ⊕
(
T − τ[i:i+l]

)
(50)

where (50) follows from (45), but contradicts (43). Hence, the
lemma must hold.
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Lemma 8. Assume N ≥ 2I + 2. Then

|ui+1| ≥ |ui|+ τi (51)

for i = 0, . . . , N − I − 2.

Proof. The proof is trivial for i = 0, . . . , I−1 since |ui+1| =
τ[0:i]. For i = I , ∃l ∈ [0 : min{I − 1, N − 2I − 2}] such that
|uI+1| = |ul+1|+ T − τ[I+1:I+1+l]. Hence,

|uI+1| = τ[0:I] + T − τ[l+1:I+l+1] (52)
≥ T. (53)

where (53) holds since τ[0:I] = τ̃max. Since |uI |+τI = τ̃max ≤
T , the lemma holds for i = I .

For i > I , from definition of ui in (19),

|ui| = |ui+l−I |+ T − τ[i:i+l] (54)

for some l ∈ [0 : min{I − 1, N − I − 1− i}].
Case 1: l ≥ 1

From Lemma 7, we obtain |ui+1| = |ui+l−I |+T −τ[i+1:i+l].
Subtracting from (54), we obtain |ui+1| − |ui| = τi, and the
lemma holds with equality in this case.

Case 2: l = 0
Note that by definition of ui+1 in (19) for some k ∈ [0 :
min{I − 1, N − I − 2− i}]

|ui+1| = |ui+1+k−I |+ T − τ[i+1:i+1+k]. (55)

Suppose that k = I − 1, then |ui+1| = |ui|+ T − τ[i+1:i+I].
Hence |ui+1| = |ui| + τi + T − τ[i:i+I]. Since T ≥ τ̃max ≥
τ[i:i+I], we obtain |ui+1| ≥ |ui|+ τi and the lemma holds for
this case.

For the other case 0 ≤ k < I − 1, note that k + 1 ∈ [1 :
min{I−1, N−I−1−i}]. Hence, by definition of ui, we obtain
(56). Then, (57) follows by substituting |ui+k+1−I | from (55)

|ui| ≤ |ui+k+1−I |+ T − τ[i:i+k+1] (56)
= |ui+1| − τi. (57)

Hence, the lemma also holds for this case.

Lemma 9. Suppose that N ≥ 3I + 1. Then ui ⊕ τi ≥
ui−2I+1 ⊕ T for each i ∈ [2I : N − I − 1].

Proof. By definition of uj in (19) for j ∈ [I + 1 : N − 2I],
uj = uj+l−I ⊕

(
T − τ[j:j+l]

)
for some l ∈ [0 : min{I −

1, N − I − 1− j}]. Applying Lemma 7 for l′ = l, we obtain
uj+l ⊕ τj+l = uj+l−I ⊕ T .

By applying Lemma 8 recursively from j + l− 1 to j + I ,
we obtain (uj+I ≥) uj+I−1 ⊕ τj+I−1 ≥ uj+l ⊕ τj+l, which
equals uj+l−I ⊕ T from above. Hence,

uj+I−1 ⊕ τj+I−1 ≥ uj+l−I ⊕ T. (58)

From Lemma 8, uk’s are an non-decreasing sequence of
positions. Hence, uj+l−I ≥ uj−I . Substituting in (58), we
obtain uj+I−1 ⊕ τj+I−1 ≥ uj−I ⊕ T . The lemma follows by
taking i := j + I − 1.

Lemma 10. Suppose that N − I − 1 ≥ 2(K − 1)I . Then for
each k = 1, . . . ,K − 1,

ui ≥ (k; 0)⊕ τ[0:i−2(k−1)I−1],∀ i ∈ [2(k − 1)I + 1 :

(2k − 1)I] (59)
ui ≥ (k + 1; 0), ∀ i ∈ [(2k − 1)I + 1 : 2kI] (60)

Proof. We use proof by induction. For the initial step k = 1,
(59) follows from the definition {ui}Ii=0 in (17).

We now show that uI+1 ≥ (2; 0) and obtain (60) for k =
1 from the fact that uj’s are a non-decreasing sequence of
positions due to Lemma 8. By definition uI+1 = ul+1⊕ (T −
τ[I+1:I+l+1]) for some l ∈ [0 : I − 1]. Note that ul+1 =
(1; τ[0:l]). Hence, uI+1 = (2; 0) ⊕ (τ[0:l] − τ[I+l:I+l+1]) =
(2; 0) ⊕ (τ[0:I] − τ[l+1:I+l+1]), which ≥ (2; 0) since τ[0:I] =
τ̃max ≥ τ[l+1:I+l+1].

For the inductive step, suppose that (59)-(60) hold for all
k ≤ m. We will now show that (59)-(60) hold for k = m+1,
which completes induction.

Firstly, note that from Lemma 9, for i ∈ [2mI : (2m+1)I−
1], ui⊕τi ≥ ui−2I+1⊕T . Since i−2I+1 ∈ [2(m−1)I+1 :
(2m − 1)I], from the inductive hypothesis (59) for k = m;
ui−2I+1 ≥ (m; 0)⊕ τ[0:i−2mI]. Hence,

ui ⊕ τi ≥ (m+ 1; 0)⊕ τ[0:i−2mI] (61)

for each i ∈ [2mI : (2m + 1)I − 1]. We use this result to
show (59) for k = m + 1. Note that ui ≥ ui−1 ⊕ τi−1 from
Lemma 8, for each i ∈ [2mI + 1 : (2m+ 1)I]. Further, since
i− 1 ∈ [2mI : (2m+ 1)I − 1], from (61), we obtain

ui ≥ (m+ 1; 0)⊕ τ[0:i−2mI−1] (62)

To show (60), note that from Lemma 9, for i ∈ [(2m+1)I :
2(m+ 1)I − 1], ui ⊕ τi ≥ ui−2I+1 ⊕ T . Since i− 2I + 1 ∈
[(2m− 1)I+1 : 2mI], from the inductive hypothesis (60) for
k = m; ui−2I+1 ≥ (m+ 1; 0). Hence, we obtain

ui ⊕ τi ≥ (m+ 2; 0) (63)

for each i ∈ [(2m + 1)I : 2(m + 1)I − 1]. We use this to
show (60) for k = m + 1. Note that ui ≥ ui−1 ⊕ τi−1 from
Lemma 8, for each i ∈ [(2m+ 1)I + 1 : 2(m+ 1)I]. Further,
since i − 1 ∈ [(2m + 1)I : 2(m + 1)I − 1], from (63), we
obtain

ui ≥ (m+ 2; 0) .
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