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Abstract

In this thesis, we present distributed resource allocation algorithms for various wireless networks,
which include Heterogenous Networks, mmWave Integrated Access and Backhaul networks. We
consider the minimum time clearing objective for resource allocation in wireless networks. The
minimum time clearing optimization corresponds to clearing a given set of files at the wireless nodes,
in the minimum possible time subject to the scheduling constraints. The optimization is NP-complete
in general. In this thesis we consider wireless network models with additional structure arising from
the above applications. Based on this structure, we propose distributed resource allocation algorithms
which only require local information and which do not suffer from a combinatorial explosion in
complexity as the size of the network grows large.

We characterize the stability of the considered wireless networks under dynamic scenarios such
as random traffic arrivals in time, and time varying channel conditions. Roughly speaking, we refer
to the network as stable if the traffic does not build up indefinitely at the nodes in the network. We
provide distributed scheduling and flow control algorithms for the wireless networks under dynamic
scenarios. We show that a version of the minimum time clearing optimization can be formulated using
the queue length information. The solution can then be used as a scheduling algorithm. It follows
that the proposed scheduling algorithm can be implemented in a distributed and efficient manner, in
topologies where the underlying structure allows for an efficient solution.

With the exception of Chapter 3, the scheduling algorithms proposed in the thesis are throughput
optimal, i.e., stabilize the network for all arrival rates within the stability region. The greedy scheduling
algorithm proposed in Chapter 3, only uses local information. We show that this proposed algorithm
achieves the largest stability region among the class of scheduling policies which only use local
information. We also provide conditions under which the greedy scheduling algorithm is throughput

optimal.
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Chapter 1

Introduction

1.1 Introduction

Resource allocation is a key component in the operation and control of wireless networks. It
has been a topic of significant research interest over the years and was studied for various networks
under different contexts. Broadly speaking, the purpose of resource allocation is to match the available
resources (e.g., time slots, frequency channels) to the traffic demands (e.g., users, flows) of the network,
so as to achieve desirable outcomes, such as fairness, maximizing the total/sum rate, or stability.

A general wireless network consists of several wireless nodes with each transmitter-receiver pair
forming a link. There are constraints on which links can be activated simultaneously, such as half-
duplex constraints, constraints due to interference. Many of the resource allocation problems that occur
in general wireless networks are NP-hard. For example, finding the maximum weighted schedule is
an NP-hard problem in general wireless networks [1]. However, there are several wireless networks
where an underlying structure allows for efficient solutions to resource allocation problems. This thesis
focuses on such wireless networks, and provides efficient resource allocation policies by exploiting
the underlying structure.

The minimum clearing resource problem can be stated as the minimum amount of resource (such
as time) required to clear a set of files (traffic) backlogged at the nodes in the network. This is also
an NP-hard problem in general wireless networks [2]. The minimum clearing resource problem is a
central topic of this thesis. The minimum clearing time optimization is closely related to the capacity
of the network. With the exception of chapter 3, it features in every chapter. In this thesis, we present

several networks and topologies where the minimum clearing time can be solved in polynomial time.
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We also derive efficient resource allocation policies based on the solution. The presented policies are
distributed in nature and hence practical in terms of implementation.

For the wireless networks in the thesis, we also consider stability under dynamic scenarios such
as occur with random traffic arrivals in time, or time varying channel conditions. We refer to the
network as stable if the traffic does not build up indefinitely at the nodes in the network. For several
networks considered in this thesis, we will show that the value of the minimum clearing time problem
(formulated using arrival rates) determines whether stability is possible, under any scheduling policy.
In dynamic scenarios, we provide distributed scheduling policies which can be implemented using
local information and message passing. With the exception of Chapter 3, the provided scheduling
policies are throughput optimal, i.e., they stabilize the network for any arrival rate vector interior to
the stability region. The proposed algorithm in Chapter 3 is a greedy scheduling algorithm which only
uses local information. We show that the proposed algorithm has the largest stability region among
the class of policies which use only local information. We also provide the conditions under which
the proposed algorithm achieves 100% of the stability region (including of global policies).

In the following, we provide an overview of the wireless networks which will be considered in this

thesis.

1.1.1 Heterogeneous Networks (HetNet)

Figure 1.1: A three tier HetNet with macro, pico and femto tiers. The solid blue lines represent the

wireless down-links and the dotted red lines represents the cross-tier interference.

The concept of HetNets originated from introduction of small cells such as picos and femtos to
operate in the same region as the traditional macro cellular infrastructure [3]. HetNets provide several

advantages. The small cells can be strategically deployed to traffic hotspots. They increase coverage
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in blind spots of macro infrastructure, e.g., improve indoor coverage etc., More importantly, small
cells offer increased network capacity due to increased spatial re-use of spectrum. Hence, HetNets
and small cells have emerged as a potential solution to meet the increasing demand for wireless data.
The trend of shrinking cell sizes is expected to continue in the future, e.g., ultra dense deployments of
millimetre wave (mmWave) small cells. As cell sizes get smaller, there will be an increased number
of tiers in the future wireless architectures. Future 5G networks are also expected to have wireless
access simultaneously available from multiple access technologies such as satellite communication
(SATCOM), aerial base stations (such as High Altitude Platforms (HAPs)), LTE, mmWave etc., Hence,

HetNets are a key part of future wireless architectures.

In a HetNet environment, a user equipment (UE) can be within the range of multiple BSs of different
tiers. The UE has to choose between several different BSs (of possibly different technologies) for
association. Hence, cell association becomes a critical challenge in HetNets. The usual association
scheme in cellular networks of choosing the BS with highest downlink signal to interference and noise
ration (SINR) value has been shown to be sub-optimal for HetNets [4, 5]. In a LTE HetNet, macro BS
has much higher transmit power compared to the small BSs. Hence, the max-SINR association leads
to overloading of the macro cell, and under utilization of small cells. Several works have has shown
the benefits of biased user association in HetNets. Biased SINR association via Cell Range Expansion
scheme (CRE) was standardized as part of enhanced inter cell interference co-ordination (eICIC) in
3GPP to address this problem [6]. In Chapter 2, we consider the optimization of cell association in
a three tier HetNet. We present novel algorithms that are more efficient than existing algorithms for

three tier HetNets.

Another important challenge in HetNet resource allocation is interference management. Consider
a LTE HetNet; the high transmit power of the macro can cause interference to the transmissions in
the small cells. This interference is referred to as cross-tier interference and, unmitigated, it adversely
affects the performance of small cells. Resource partitioning in the time domain via the Almost
Blanking Subframes (ABS) scheme was introduced as part of enhanced inter cell interference co-
ordination (eICIC) in 3GPP to address this [6]. Under ABS scheme, the macro is silent on the ABS
subframes, which allows the small cells to transmit without the macro interference. In Chapter 2,
we introduce a novel framework for joint-optimization of cell association and resource allocation (for
interference avoidance) in a three tier HetNet. We derive new structural results for joint cell biasing

and resource allocation, and propose novel algorithms based on the results. We provide example
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networks to show that the framework can be applied in a wide variety of scenarios, such as three tier
HetNets with mmWave femto cells, and three tier HetNets with HAPs.

In Chapter 4, we generalize the resource allocation framework to a K tier HetNet which can be
applied for management of both cross-tier interference and co-tier interference (i.e., between the cells
in the same tier). We present a novel resource allocation framework which is linearly scalable in the
number of tiers. We also derive algorithms which are of linear complexity in the size of network, by

exploiting the structure of the K tier HetNet model.

1.1.2 Millimetre wave Integrated Access and Backhaul (mmWave IAB)

mmWave cellular networks are expected to be a central part of the Next generation wireless
communications (5G) [7]. mmWave technology is capable of delivering very high rates, due to
the vast amount of spectrum available in the mmWave band. However, wireless communication at
mmWave frequencies comes with two major challenges, namely 1) high isotropic propagation loss,
and 2) sensitivity to blockage by the objects in the environment. To overcome the high propagation
losses, directional communication using beam-forming is being considered for mmWave cellular. High
beam-forming gains are achievable by implementing antenna arrays in a tiny area ( large numbers of
antennas are possible due to the small wavelengths). The mmWave cell sizes are expected to be small
due to the high propagation loss and blocking, and ultra dense deployments of Next Generation Node
Bases (gNBs) are being considered to provide universal coverage.

It is prohibitively expensive to provide fibre backhaul support to all the mmWave gNBS under
dense deployments. Hence, there has been recent interest in multi-hop relaying (or self backhauling)
in mmWave cellular networks as a potential solution. Notably, 3GPP has completed a recent study
item on the potential solutions for efficient operation of integrated access and wireless backhaul (IAB)
for New Radio (NR), as part of standardization [8]. The study emphasizes the joint consideration of
radio-access and backhaul for mmWave cellular networks.

In [8], a multi-hop IAB network consists of two types of gNBs. A fraction of gNBs are deployed
with dedicated fiber backhaul links, referred to as IAB donors [8]. The other gNBs (referred to as
IAB nodes) relay their backhaul data over wireless mmWave links, possibly in multiple hops to an
IAB donor. Dynamic resource allocation (or scheduling) is a key challenge in the control of multi-hop

IAB networks [6, 9]. An IAB node establishes a link to a parent node (either another IAB node or a
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donor). The central unit (CU) at the IAB donor establishes a forwarding route to the IAB node (via

the parent). Therefore, traffic of a UE is forwarded along this established route from the IAB donor to

— \
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Figure 1.2: A mmWave Integrated Access and Backhaul Network.

the UE (on downlink).

u3 i
Uy .

The 3GPP study identified two topologies for the operation of mmWave IAB, 1) spanning tree
(ST) and 2) directed acyclic graph (DAG) topology [8]. We primarily focus on the ST topology, where
each IAB node has one parent node (either a IAB node or the IAB donor). e.g., see Figure 1.2.

Dynamic resource allocation (or scheduling) is a key challenge in the control of multi-hop IAB
networks [6, 9]. Joint consideration of access and backhaul in resource allocation for IAB networks
is emphasized in [8]. According to [8], it is critical to consider in-band backhauling (i.e., backhaul
and access use the same frequencies) solutions that accommodate tighter interworking access and
backhaul. In an in-band scenario, the half-duplex constraint imposes restrictions on the links that can
be active simultaneously.

In chapter 3, we consider scheduling algortithms for the 3GPP mmWave IAB network model in
an in-band IAB scenario. Under the model, the gNBs are allowed to have multiple RF chains. We
consider a dynamic model where packets arrive as an exogenous process at the IAB donor node. We
also consider time varying link rates to capture the short term variations (fading) in the mmWave
channels. We consider the IAB network to be stable under a scheduling policy if the queue lengths
do not grow indefinitely. We characterize the stability region of the IAB network, as set of the arrival
rate vectors for which stability is possible under any scheduling policy.

We investigate a class of distributed scheduling policies which only require local information. We
also characterize the stability region for this class of local policies. We show that stability region of

the local policies is the same as that of the whole stability region, when the link rates are not varying
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(i.e., constant) over time. We propose an optimal distributed local scheduling policy (from this class)
for the IAB network which achieves the stability region of the class of local policies. Using numerical
simulations, we show that the performance of the proposed local algorithm is very close to that of

global policies.

1.1.3 Wireless Networks under conflict constraints

BS1
BS 2

Unacceptable

{1

. interference .2~

Figure 1.3: Example Network. The solid blue lines are wireless links and the red dotted lines represent

the interference (or contention).

Consider a wireless network as a graph G = (V, E), where V is the set of wireless nodes and E is
the set of wireless links. In a wireless network, there can be constraints on simultaneous link activation
for two links, say ¢,{, € E. For example, 1) Suppose that receiver of link ¢ is the transmitter of
{>, then €| and ¢, cannot be activated simultaneously due to the half-duplex constraint. 2) Consider
a Carrier Sense Multiple Access (CSMA) type wireless network [10, 11]. Suppose that £; causes
too much interference at the receiver of ¢,. Simultaneous activation of ¢; and ¢, together leads to
collisions, and hence, not allowed. An example is provided in Figure. 1.3. We refer to the constraints
of this kind, where simultaneous activation of two links are not allowed, as the conflict constraints.
Conlflict constraints have been widely used to model wireless networks in the wireless scheduling and
queueing literature [10-19].

In Chapter 5, we propose a novel distributed greedy resource allocation scheme for a wireless
network under conflict constraints. The algorithm only requires local information to make decisions.
The greedy algorithm always produces feasible solutions to the minimum time clearing problem. We

show that the algorithm has a monotonicity property that the objective value under the feasible solution
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at time ¢ + 1 is less than or equal to the value at time ¢. We consider two topologies and show that the
algorithm converges to the optimal solution under these topologies, due to the underlying structure of
the topology.

In Chapter 6, we consider a wireless network under conflict constraints, in a dynamic scenario,
with exogenous flow arrivals as a stochastic process. We consider flow control and resource allocation
for this network, and characterize the stability region. We say the network is stable if the flow backlog
in the network does not build up indefinitely. We propose a novel joint flow control and resource

allocation policy, based on a minimum resource clearing optimization.

1.2 Overview of the thesis

1.2.1 Chapter 2

Figure 1.4: A three tier Heterogeneous Network with macro, pico and femto tiers. The solid blue

lines represent the wireless down-links and the dotted red lines represents the cross-tier interference.

We present a novel distributed framework for optimization of resource allocation and cell associa-
tion in three tier HetNets. We consider the problem of jointly optimizing user association and resource
allocation in a three tier downlink HetNet. We refer to the tiers as macro, pico and femto tiers. We
formulate the minimum time clearing problem as a linear program (LP). We show that by fixing the
time allocated to small cells, the LP can be decomposed into several (equal to number of pico BSs)
smaller independent LPs. It follows that significant parallelization can be achieved by solving these
LPs simultaneously at the corresponding pico BSs. We then show that the user association is deter-
mined by a set of rate-bias multipliers, one multiplier per BS. The problem of finding the multipliers

using conventional approaches leads to a high dimensional search, e.g.,[4, 20].
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In contrast, we present new structural results which enable us to propose more efficient algorithms
with reduced complexity. We show that each rate-bias value (corresponding to a BS) crucially only
takes values from a discrete set. For a pico P;, the size is less than 0.5|U;|?, where |U;]| is the number
of UEs covered by the pico. The search space of multipliers is reduced to a small finite set which we
characterize. We further show that the solution of the LP at each pico BS is determined by just two
parameters: the femto time allocation and the pico rate-bias. We propose novel distributed resource
allocation and cell association algorithms based on the structural results. Figure. 1.5 provides an

illustration of message passing under the proposed framework.

] 4 (Pico Algorithm)

(Femto Algorithms)

(a) Macro level distributed scheme (b) Pico level distributed scheme

Figure 1.5: Distributed computation of clearing time using message passing algorithms. The circles
represent the allocation functions at the BSs, and the arrows represent the message exchanges. The

numbering on the arrows is the order in which the message exchanges occur.

We apply the framework to a wide variety of three tier HetNet examples, which include three tier
HetNet with mmWave femto cells, and three tier HetNet with HAPs. We also consider a dynamic three
tier HetNet model, with stochastic flow arrivals. We show that the minimum time clearing optimization
provides a stability characterization for the dynamic model. Hence, the three tier framework can be
used for capacity planning under the dynamic model, or can be applied in real-time for optimal control

of HetNets.
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us Uy Uus Ug

Figure 1.6: Graph representation of IAB network.

1.2.2 Chapter 3

We consider a mmWave IAB network under the tree topology in an in-band IAB scenario. We
model it as a rooted tree. For an example, see Figure. 1.6. In Figure. 1.6, the root node r is IAB donor.
In Figure. 1.6, n; provides wireless backhaul to IAB nodes n3,n4, and wireless access to UE u;. In

our model, we allow multiple RF chains.

We consider a dynamic scenario with exogenous packet arrivals and varying link rates. We
consider the system to be stable if the queue lengths do not blow up to infinity. We characterize the
stability region for the IAB network, as the set of arrival rate vectors for which stability is possible

under some scheduling policy.

We present a novel distributed and local scheduling policy for the mmWave IAB network. The
policy is a hierarchical scheduling algorithm, where a IAB node makes its scheduling decision (i.e.,
for its downlinks) based on the decision of its parent, as follows. If the backhaul link to the IAB node
n is scheduled by its parent, no downlinks are scheduled at n. Otherwise, the IAB node n chooses
its downlink schedule based on a local max-weight based rule which only requires queue information
at n. We show that when the link states are reliable, i.e, unvarying, the proposed policy achieves the

entire stability region (i.e., including that of global policies) for the mmWave IAB network.

We provide numerical simulation results for a IAB network in a realistic scenario with time-varying
link states. We show that the proposed local policy performs very closely to the global max-weight
and back-pressure policies (in terms of stability) in the considered IAB scenario, where the global

policies have full access to all the queue lengths and link states information to make the scheduling
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decision.

1.2.3 Chapter 4

We generalize the three tier resource allocation framework from Chapter 2 to K tiers.

T tier 1
ni n2 3 Ny tier 2
706 ny 718 .
3 ni1 tier 3
Ng nig ni2

113/ nig Ny n16 niz 718 \ 719 N2/ M2 1122 123 or 4
tier
tier 5

N24 MN25 MN26 T27 N2g MNag n3p 131 N32 n3z N34 N35 N3¢

Figure 1.7: K tier HetNet.

We consider a K-tier HetNet, with a tier-1 BS r covering a wide area. There are several smaller
BSs of different tiers operating in the coverage region of the tier 1 BS . The BSs can be divided into
tiers based on their coverage area. In general, the lower tier cells have BSs at higher altitudes, which
have larger coverage areas. Several smaller cells (of higher tier) can operate in the coverage area of a
lower tier cell. In Figure. 1.7, all the other BSs are operating in the coverage area of r, and ny, ny, n3, n4
are the tier 2 BSs under r. Similarly, n7, ng are the tier 3 BSs operating under n,.

Under the K tier HetNet model, a lower tier BS causes debilitating interference to the smaller
cells (of higher tier) in its coverage area, if using same resources. Thus, a transmission from BS
n of tier i causes interference to the transmissions in a tier j cell in the coverage area of n, where
Jj > i, e.g., ny and nig cause debilitating cross-tier interference to n3, if scheduled on same resource
as n3g. The other type of interference is the co-tier interference, which is the interference caused by
transmissions of BSs in the same tier. Interference is avoided by resource partitioning, i.e., allocating
separate resource to the interfering BSs. The K tier resource allocation framework can be applied for
management of both cross-tier interference and co-tier interference (i.e., between the cells in same

tier).
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We introduce a novel graphical model for the K tier HetNet. For an illustration, see Figure. 1.8.
In Figure. 1.8, node r is the tier 1 BS, which interferes with the rest of the BSs in the network. This is
signified by the edge joining r to H,. Here, H, is analogous to the sub-network which is operating in
the coverage area of r. It can be noted that there is a graph inside H,, which models the interference
constraints at tier 2. Here nodes ny,ny,n3, ns are the tier 2 BSs. For co-tier interference, n; is joined
by an edge to n; if there is co-tier interference between n; and n;. As with H,, H,, is analogous to the
sub-network which is operating in the coverage area of n;. The edges connecting n; to Hy, represent

the cross-tier interference caused to the lower tier BSs in the sub-network H,,.

Figure 1.8: Example Graph.

We consider the minimum resource clearing problem for the K tier HetNet model, as a linear
programming (LP) formulation. We propose a novel distributed method to solve the LP, which
involves solving smaller linear programs at each tier (e.g., the formulation at r only involves {ni}f'zl).
The smaller LPs can be specified using only local information. We show that the overall LP can
be solved by recursively solving the smaller LPs at each tier. Thus, the complexity of the proposed
solution is the sum of complexities of the smaller LPs at each tier.

Based on the solution, we propose a novel distributed framework for K-tier resource allocation.
The framework only requires knowledge of the interference relations at the tier level (or in the co-tier

graph), e.g., r only needs to know the interference relations between {ni}?: - We show that the
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proposed resource allocation framework is scalable with the increase in tiers, i.e., complexity under
the framework increases only linearly with the increase in number of tiers. When there is additional
structure in the co-tier graph, we provide algorithms which are of linear complexity in the size of the
co-tier graph. In such networks, the proposed framework only has a linear complexity in the size of

the network.

1.2.4 Chapter 5

In Chapters 2-4, we present distributed resource allocation algorithms for various networks. The
algorithms rely on the presence of a central node for implementation, (e.g., macro M in Chapter 2,
and root node r in Chapter 3 and Chapter 4). In this chapter, we consider the minimum time clearing
problem as a linear program for a wireless network under conflict constraints. We propose a novel
distributed greedy resource allocation scheme for this network, which is more distributed than the
algorithms in the preceding chapters. The algorithm is a book ahead slot reservation system, which
only requires local information to make decisions. The scheme can be considered as a network-wide
round robin scheduling algorithm.

We consider slot allocation for users {”k}szv where a user u; cannot be scheduled in the same
slot as any u; € I(u;). For the example in Figure. 1.9, for each link u;, let I(u;) be set of all u; such
that u;, u; share a common node. Under the algorithm, u; only needs to exchange information with its

neighbors, i.e., users in 1(u;).

ns Ng nr Ng Mg N1 ny1 N2

Figure 1.9: Example network under conflict constraints.

We show that the proposed greedy algorithm generates feasible solutions to the minimum time

clearing linear program at each step. We show that the algorithm has a monotonic behaviour, that the
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objective value under the feasible solution at time ¢ + 1 is less than or equal to the value at time 7. In
general, the greedy algorithm may only produce sub-optimal solutions of the minimum clearing time
problem. We consider two topologies (with a special structure) and show that the algorithm always
converges to the optimal solution under these topologies in finite time.

The two topologies are based on tree graphs. Topology 1 can be used to model wireless broadcast
networks. Topology 2 can be used to model a wireless network with relays, e.g., [AB network, where
IAB nodes have a single RF chain. Figure. 1.9 is an example of Topology 2. It can be used to represent
the following relay network. Let ny be a BS with wired backhaul connection, and nodes {ns,...,n}
represent the mobile user equipments (UEs). The nodes {ni,...,n4} are relay BSs which forward the
data from ng to the UEs. The links (which we call users) in Figure 5.3 correspond to the wireless links

that occur in this network.

1.2.5 Chapter 6

We consider a wireless network under conflict constraints in a dynamic scenario. We consider a
scenario with exogenous flow arrivals as a stochastic process. We consider the problem of flow control
and resource allocation for this network. We consider the system to be stable under a policy if the
backlogged flows (in the network) do not build up indefinitely. We characterize the stability region
for the setup, as the set of arrival rate vectors for which stability is possible under any algorithm.
We propose a novel joint flow control and resource allocation policy, based on a minimum resource
clearing optimization. The proposed stationary policy only requires current flow backlog information
to solve the optimization. The resource allocation is reconfigured only when the state changes, i.e., a
when a flow arrival or a departure occurs in the network. We show that the proposed policy stabilizes
the network for any arrival rate vector within the stability region. As an example, we present a detailed
application of the proposed algorithm in a dynamic K tier HetNet model.

We make use of Fluid limit theory [21, 22] to establish the stability of the proposed policy. We
derive the fluid limit model corresponding to the system under the proposed policy. We show that
the fluid limit is stable (i.e., drains to zero state in a fixed time) for any arrival rate vector within the
stability region. Once the stability of fluid limit is established, we follow the theory in [22] to establish

the stability of the system under the proposed policy.
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Chapter 2

Optimal User Association and Resource

Allocation for Three tier HetNets

2.1 Introduction

Heterogeneous Networks (HetNet) consist of low power base stations (BS) such as pico cells and
femto cells deployed to operate in the same region as traditional macro cellular infrastructure [7].
These small cells increase the capacity due to better spatial re-use of spectrum. Future 5G networks
are expected to be even more heterogeneous with wireless access simultaneously available via multiple
technologies, including new technologies such as mmWave and aerial BSs. As demand increases and

cells get smaller, there will be an increased number of tiers in future HetNet architectures.

Stochastic geometry based approaches traditionally employed for studying HetNets provide an-
alytical results on coverage and SINR distributions, but are not suitable for real-time control. The
optimization based literature has focused on cell association and resource allocation for two tier Het-
Nets, and to date, there is no complete analytical solution for HetNets with more than two tiers. With
the increased complexity of 5G networks, there is a need for studying the problem in general cases
with more than two tiers. This chapter provides a complete solution to the three tier problem. Results

in this chapter allow for a wide range of new and emerging wireless networks to be analyzed within

A part of this chapter is published as: Gopalam, S., Hanly, S. V., & Whiting, P. (2020). "Distributed User Association
and Resource Allocation Algorithms for Three Tier HetNets." IEEE Transactions on Wireless Communications, 19(12),

7913-7926.
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a common framework. Examples of these networks include 1) mmWave small cell networks, 2) net-
works with aerial platforms and 3) multi-tier radio access technologies. In the following paragraphs,
we discuss important future technologies which can be treated under this framework.

Ultra dense mmWave cellular networks are expected to play a key role in 5G [7, 23]. Wireless
backhaul solutions are proposed to enable such a dense deployment [7]. Connectivity of mmWave
links can be highly intermittent due to blocking by mobile objects [7, 23]. Multi-connectivity solutions
(where a UE maintains connection to multiple BSs, so that there can be a fast handover in the event
of blockage) are being studied to deal with blocking [23]. In section 2.5, we treat mmWave small
cells under our optimization framework. We consider the effect of wireless backhaul and offloading

of blocked users to microwave BSs and provide insights into system design and backhaul planning.

<’< D) -
N &4 < >>) Ground
Station

(a) Network with Drones (b) HAP Network

Figure 2.1: HetNet with UAVs. (© 2020 IEEE)

In addition to terrestrial networks, wireless communication using aerial platforms is also being
considered for future networks [24]. In low altitude platform applications, unmanned aerial vehicles
(UAVs) are deployed to provide wireless access services as BSs, or can take the role of UEs requiring
wireless access from the existing BSs [25]. In high altitude platform (HAP) applications, aircrafts or
airships are deployed at altitudes of 17 to 22 km in the stratosphere to provide wireless connectivity
over a large area [26]. HAPs have a very large coverage area, typically a few macro-sites, adding an
extra tier at the top of the existing terrestrial network. These networks can be modelled as three tier
HetNets as shown in Figure. 2.1.

Our framework has the following features which are common to all the above mentioned applica-

tions. 1) The BSs can be divided into tiers based on their coverage area. Generally, the higher tier
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cells have BSs at higher altitudes and cover larger coverage areas. Several smaller cells can operate in
the coverage area of a high tier cell. 2) A UE can potentially associate and get service from multiple
different tier BSs. 3) Cross-tier interference - a higher tier BS causes debilitating interference to the
smaller cells in its coverage area, if using same resources. From two to three tiers, there is an increase
in the dimensionality of the joint optimization problem, e.g., two resource variables per UE to three per

UE. Therefore, complexity of algorithms is a crucial consideration, which we address in this chapter.

Figure 2.2: A general three tier HetNet. The blue lines depict the BS to UE links and the red lines
depict the interference. (© 2020 IEEE)

Joint user association and resource allocation problems were studied for HetNet control in several
works in the literature. In [4, 27-30], the approach was utility maximization. In [31-33], stochastic
geometry was used to derive results. In [5, 34—39], optimization for flow-based models was considered.
[40—43] considered utility maximization including power control.

Although some works modelled k-tier HetNets, they had drawbacks. In [4, 29, 35, 39] resource
partitioning between tiers to avoid cross-tier interference was not considered. The solutions in
[32, 33, 36] are not adaptive to the changes in traffic, and hence not suitable for real-time control.
Also, the same bias value was applied to all the BSs in a tier, which is restrictive. Centralized solutions
were proposed in [30, 40, 41, 43]. Only heuristic solutions were given in [40, 42, 43]. Also, the
resource partitioning and user association results in [32] were derived using simulation and cannot be
used for real-time control.

In this chapter, we consider the objective of clearing a given set of files in the network using
minimum possible resources, and refer to it as the minimum time clearing problem. In our prior work
[37, 38, 44], similar formulations were used to derive joint optimization results for two tier HetNets.

The three tier problem was considered in an early investigation in [20]. However, the proposed solution
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involved a high dimensional search (equal to number of femto BSs) to find the solution, which makes
it prohibitive for real-time implementation.

We consider the problem of jointly optimizing user association and resource allocation in a three
tier downlink HetNet. We refer to the tiers as macro, pico and femto tiers. We formulate the minimum
time clearing problem as a linear program (LP). We show that by fixing the time allocated to small
cells, the LP can be decomposed into several (equal to number of pico BSs) smaller independent
LPs. It follows that significant parallelization can be achieved by solving these LPs simultaneously
at the corresponding pico BSs. We then show that the user association is determined by a set of
rate-bias multipliers, one multiplier per BS. The problem of finding the multipliers using conventional
approaches leads to a high dimensional search, e.g., [4, 20]. In contrast, we present new structural

results which enable us to propose more efficient algorithms with reduced complexity.

2.1.1 Contributions

* We provide a tractable framework for joint-optimization and cross-tier interference avoidance
in three tier HetNets. The framework can be applied in a real-time manner for optimal control

of HetNets, or can be used a offline tool for downlink capacity analysis.

* We present distributed algorithms to find the optimal solution under the proposed framework.

The algorithms are highly efficient due to the new structural results we obtain in the chapter.

* We show that each rate-bias value (corresponding to a BS) crucially only takes values from
a discrete set. For a pico P;, the size is less than 0.5|U;|?, where |U;| is the number of UEs
covered by the pico. The search space of multipliers is reduced to a small finite set which we

characterize.

* We further show that the solution of the LP at each pico BS is determined by just two parameters:

the femto time allocation and the pico rate-bias.

We now present the outline of the chapter. In Section 2.2, we describe the system model and
problem formulation. In Section 2.3, we present the main results of the chapter. In Section 2.4, we
present the numerical results derived using simulations. In Section 2.5, we treat the HetNet with

mmWave small cells and backhaul under the framework developed in the chapter.
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2.2 System Model and Problem Formulation

Consider a 3-tier HetNet as shown in Figure. 2.2. There are N pico BSs labelled as {Pi}l.]\i T
operating in the coverage area of the macro BS M. There are /V; femto BSs operating in the coverage
area of a pico P;, labelled as {F J’ }7:‘1 LetU ; denote the set of UEs that are in the coverage area of F J’
AUEu € U;. can receive data from the BSs F]’.', P; and M as shown in Figure. 2.2. Let U; := U;Vi] U;
denote the set of UEs that are covered by P;.! Similarly, let U := Uf.\; | Ui denote the set of all the UEs.

We consider time division duplexing (TDD) for resource partitioning. A high tier BS causes
cross-tier interference to the smaller tier BSs in its coverage area, i.e., M causes interference to all
the other BSs, and P; causes interference to F J’ We consider significant cross-tier interference in our
model (as it is the case in HetNets, e.g., [32]). Therefore, two interfering BSs such as P; and FJl are
not allowed to transmit at the same time under our model.

Let B;'. denote the set of all the BSs excluding F ;,Pi and M. We consider the rate (in bits/sec) of

the link between F]? andaUE u € Uj. as follows

T. = Blogy(1+ prigpi,/ (o + Igi,)

where B is the transmission bandwidth, g, is channel gain between the BS b and the UE u. g,
includes the antenna gain, path loss and shadowing loss. p;, is the transmit power of the BS b and o2
is the noise floor. The term IBJL:M is the interference caused to the transmissions from F 1’ to u by the
BSs in B;'., i.e., BSs which are not covering F ]’ We treat IBJ".,u as static interference which depends on
Bj. and u, i.e., as another noise source 2. Similar assumptions are commonly adapated in the literature,
e.g., [35, 39].

Therefore, T, is rate of the link between F]’ and u, provided the pico P; and the macro M are muted.
Similarly, let R, (and S,) denote the rate that a UE at user site u can receive from the macro M (and

the pico P; resp.), provided the interfering BSs are muted.

For notational simplicity, we do not explicitly model the UEs that have no femto connectivity and only have coverage
from a pico Pi and macro M. Such UEs can be treated as being in range of a virtual femto Fi which Ni+1 provides zero
rate. For these UEs, some of the thresholds calculated in the chapter will be infinite, but this only means that the UEs do

not associate with the virtual femto that provides zero rate.
2Strictly speaking, interference depends on the set of BSs in B} transmitting in a given slot, and is upper-bounded by

the worst-case interference )., .4 pr8p,u. However, fractional frequency re-use schemes are usually adopted to mitigate
J

any significant co-tier interference between two near BSs of same tier [39], where the assumption is justified.
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2.2.1 Minimum time clearing LP

A UE u has to download a file of size D, bits. The file can be downloaded from any BS that is
inrange. AUE u € U]i. can possibly download a part of the file from each of BSs M, P; & F J’ . For
uelU ;., let x,, (y, & z,) denote the amount of file (in bits) downloaded from the macro M (pico P; &
femto F} resp.). For this setup, the minimum time (in sec) required to clear the traffic of all the UEs

is formulated as LP (2.1-2.4).

min 07T+qu/Ru 2.1
XYy ZusTT5€0 2 el

s.t. Z Vu/Su <7 —¢, Vie{l,2,...N} 2.2)

uel;
Zzu/TMSEi, Vje{l,2,...N}ie{1,2,... N} 2.3)

uelt

J
Xy+YVu+z,=Dy, YuelU 2.4)

In (2.1), ey Xu/ Ry is the time used by the macro and r is the total time used by the small cell BSs.
Out of time m, ™ — ¢ is used by a pico P; in (3.3) and the rest ¢ is used by each of the femtos {Fj’f }j.vzil
in (3.4). Note that the BSs M;, P; and Fj’ are allocated different times under the LP, thus avoiding
cross-tier interference.

Fixing a value of &, LP (2.1-2.4) can be divided into N independent LPs, one for each pico P;.
The LP involving P; is formulated as LP (2.5). Let f;(x) denote the optimal solution of LP (2.5) for a
given mr. The solution of LP (2.1-2.4) is given by min (o) 7 + Zf\i | fi(m).

min E Xu/ Ry
XusYusZu-€i =0

ueU;
« constraint : S.t. Z VulSu S m—€
ueU;
B; constraint : Z /Ty < €, Vj€{1,2,...N;}
ueU;
v, constraint : Xy +Yu+ 2, =D, YueU (2.5)

Note that f;(7r) can be computed at pico P;. Hence, the computation of clearing time 7 + Zf.\i | fi(m)
can be parallelized and distributed over the picos. Fig 2.4(a) (in page 26) depicts a distributed scheme

using message passing for such a computation. Due to the convex nature of the function 7 + Zfi | fi(m),
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the optimal 7 and clearing time can be found by methods such as a line search. This is the strategy
that we will follow to find the solution of LP (2.1-2.4).

In the rest of the chapter, we will focus on finding f;(xr) at a pico P; for an arbitrary i € {1,... N},
i.e., we will focus on the solution of LP (2.5). The notation used in the chapter is summarised in the

following table.

Table 2.1: Table of Notation. (© 2020 IEEE)

Notation Description

Xu3 Yus Zu | Amount of file (in bits) allocated to u € U; by macro M; pico P;; femto F J’ resp.

Ry; Su;s T, | Rate of the link (in bits/sec) between u € U ; and macro M; pico P;; femto F J’ resp.

T—¢€ Time allocated for transmissions of pico P;
€ Time allocated for simultaneous transmissions of femtos {F ]’ }§v=[1
D, Total file size of u (in bits)
o2 min{T, /Ry T, /Su}

Rate bias multiplier corresponding
1; a; B; ' @, B and p;; are
to macro M; pico P;; femto F J’ resp.

_ defined in Theorem 2.3.1
Biased rate of u € U' from
J in the following section

macro M; pico P;; femto Fj’ resp.

2.3 Main Results

For any u € U;, let x;,, y;, and z,, denote the value of x,, y, and z, respectively under an optimal

solution of LP (2.5). Let x := [x,]uev;» ¥ = [Yuluev, and z := [z,]ucy,. We present the main results

as the following Theorems. For proofs, refer to Appendix 2.7.1.

Theorem 2.3.1 (Rate biasing rule). There exist optimal rate-bias multipliers, «* > 0 corresponding to
P; and ,B;T > 0 corresponding to F j‘ , Vj € {l,...N;} which determine the user-association as follows.
For any u € U;

1) x;, > 0,0onlyif R, = 1]y

2) y, > O,only if Su/a* = 1]y,
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3) 2 > O,0nly if T,/ B = 1]y,
where 1]y, = max{Ru,Su/a*,Tu/,B;.‘} is the maximum biased rate. Further, define p¢ =

min{aT,/S,,T,/R,}. Foranyu € U;., the statements of the flow chart in Fig 2.3 hold true.

)

uEUL

{

o <5 oo > By

hbﬁ

6
Q

Femto UE S
v Pu J = ot
Ru, Ru Ru
Macro UE Pico UE Macro-Pico Macro-Femto Pico-Femto Macro-Pico-Femto
split UE split UE split UE split UE

Figure 2.3: User Association flow chart. The conditions leading to split UE cases are colored in red.

(© 2020 IEEE)

Theorem 2.3.1 states that the optimal user association is determined by a rate-biasing rule. The
macro rate is not biased (or equivalently, the bias is 1). Fora UE u € U; the pico and femto biased
rates are S, /a* and T,/ ,8;? respectively. A UE u associates with the BS (or BSs) providing the highest
biased rate 1/y;, = max{R,,,Su/cy*,Tu/ﬁ;f}. eg, H)IfR, > max{Su/a*,Tu/,B;f}, the UE u associates
with macro M (Macro UE case in Figure. 2.3), 2) If R, = S, /a* > T,/ ﬂ;’f, the UE u associates with
both the macro M and pico P; (Macro-Pico split UE case in Figure. 2.3).

Figure. 2.3 presents the possible cases of allocation that can occur under the rate-biasing rule.
Theorem 2.3.1 provides a partial characterization of the solution via Figure. 2.3. Given the optimal
multipliers, Theorem 2.3.1 determines the allocation for non-split UEs (as given in Figure. 2.3). But,
the split UEs may receive a part of the file from each associated BS which is not given here.

Algorithm 1 (on page 23) provides the full solution. To develop the algorithm, we first present the

following two theorems concerning the optimal solution and the multipliers.

Theorem 2.3.2 (Finite set of rate-bias multipliers). Let pf := min{aT,/S,,T,/R.}. The rate bias

multipliers «* and ﬁ; take values from finite sets A and B; respectively, as follows
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. * 1 Vi Sadp . Ty I, Ty Ty o
() @ e A=UlL {78 & < 855 < $hanevv

(ii) B; € Bj :={p} ue U;'.}%A,Vj e{l,...N;}

UL+ U

Note that |A| < Zj-v;l M
There are only a finite set of possible values for the multipliers, which are given in Theorem 2.3.2.
Naturally, one can be tempted to implement a discrete search to find the optimal multipliers. However
as explained in the previous paragraphs concerning Theorem 2.3.1, such knowledge does not provide
the solution for split UEs. The following theorem forms the basis of our algorithmic solution, which
achieves two goals, 1) it provides the full allocation, including split UEs, and 2) it reduces the

dimensionality of the problem to just 2.

Theorem 2.3.3 (Allocation function). There exists an allocation function ® : R, X [0, 7] — Ri' Uil+N;

(defined in Algorithm 1), which provides a mapping from a pair of {a, €} € Ry X [0, 7] to a solution
[x,y,z] of LP (2.5) and the femto multipliers 8 = [,Bj]jvil > 0 as follows.

[x’y’ Z9ﬂ] = @(Q’, ei)

. . k k * * — k k k. . . .
Moreover, the function satisfies [x*,y*,z2%,B"] = O(«a € ), where a* is the optimal pico rate-bias

multiplier and € is the optimal femto time in LP (2.5).

Theorem 2.3.3 provides the full solution of LP (2.5) as ®(a*, el.*). It also shows that the solution is
determined by just two variables - @* and €. Hence, a search over 2 parameters: discrete search for
a” over A and a continuous search for € over [0, 7], can be implemented to solve LP (2.5) (in contrast

to a high dimensional search for N; + 1 multipliers e.g., [4, 20]).

Algorithm 1 Allocation Function O(«, ¢;)

1: Run Algorithm 2 to obtain {F;(c, e,-)}j.vz" , and to evaluate B,z,a,b,6. // Femto allocation step
/I A special case that can occur is when two split UEs, a femto-pico split UE a and a femto-macro split UE b are in
U} for some j (See step 5 in Algorithm 2). In this case, z,4, z;, Will be determined by Algorithm 3 in the next step.

2: Run Algorithm 3 to obtain P(«, €, 2, a, b, §), and to evaluate y, 7,4, Zp. /1 Pico allocation step

3 x,=D,—y,—zy, Yu € U; // Macro allocation step

4: return x,y,z,8
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The allocation function @(a, €;) of Theorem 2.3.3 (given in Algorithm 1) defined using the femto
allocation functions Fj(a,€),j € {1,...N;} given in Algorithm 2 (on page 24) and a pico allocation
function P([F;(«, ei)]ﬁl) given in Algorithm 3 (on page 25).

The femto allocation function ¥;(a, ;) determines the femto multiplier 8; and femto allocation
[Zu]ueujli for the femto F J’ The pico function P([F;(a, el-)]?];' ,) takes the outputs from the femto
functions and determines the pico allocation [y, ],cy, for the pico P;. The macro allocation [x,],ev,
can be completed by line 3 in Algorithm 1. The individual steps in Algorithm 2 and Algorithm 3 are

justified by the Lemmas mentioned in the corresponding steps.

Algorithm 2 Femto Allocation Algorithm ¥;(a, €)

1: Initialize flag; =0 // This flag is used to note the occurrence of two split users case, and 0 by default.
2: Sortu € U;. in descending order of py such that pjy > ... > oy . /I where K = |UT|
3: if Zle D, /T, < € then // No split users case.

2y, =Dy, forl <k <K

Bj = Py, (See Lemma 2.7.4 in Appendix 2.7.5 & Appendix 2.7.7)

4: elseif 3/ < K such that pj;, # p;, ,Vk # [ and satisfying Zi;ll D, /T, <&< Zi{zl D, /T, then

/I One femto split user case

D forl <k<il-1

Uk

2y =Ty, (6 — Zf{_,il Dy,/T,,) fork=1I

0 foril+1<k<K

Bj = P, (See Lemma 2.7.5 in Appendix 2.7.5)

5. elseif 3 < K — 1 such that p? = p% and ¥\ Dy, /T, < & < 347 Dy, /Ty, then // Two femto
split users case. We now set a flag to denote that this case occurred.

6: flagi =1,a:=u;, b:=u // femto-pico split UE is a, femto-macro split UE is b

D forl <k<l-1

Uk
Zuk -

0 forl+2 <k <K

Bj = Py, = Puy,, (See Lemma 2.7.6 in Appendix 2.7.5)
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7: 0 :=¢€ — 2_:11 Dy, [Ty, 116 is the time remaining for a and b. The allocation z, and z; is determined in
step 7 of Algorithm 3
8: end if

9: return {z, }MEU]{_{a,b},ﬁj, a,b,o

Algorithm 3 Pico Allocation Algorithm P(a, €, z,a, b, o)
1: W be the set of UEs u € U; — {a, b} such that D;, > 0, where D), := D, — z, // not femto UEs

2: Sort wx € W in descending order such that S,,, /R,,, > ... > SWlWl/RW\W\'

3: if flag; = 0,Vj € {1,...N;} then /1 Two split users case did not occur
4: Find / < |W| such that 22;11 Dy, /Sy, <7m—¢ < Zizl Dy, [Sw;

D, forl <k<i-1

Ywe =\ Sy (m—& =YL Dl [Sw,) fork =1

Wi’

0 forl+1<k < |W|
(See Lemma 2.7.7 in Appendix 2.7.6)

5: elseif flag; =1, forone j € {1,...N;} then // Two femto split users case occurred in 7—7

6: Find [ < |W| satistying S,,, /Ry, > @ > S,,,,/R

Wi+l

Dy, forl <k<lI
ywk:

0 forl+1<k <|W|
!
Ya = Sa(m — € — ZD:"’C/SW")
k=1
b =0

7: Za =Dy — Ya, 25 = Tp(6 — 24/ Ty) (See Lemma 2.7.8 in Appendix 2.7.6)
8: end if

9: return y, z,,2p
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2.3.1 Scalable and Distributed Implementation

min f(a, &;) = fi(ﬂ)] 4 (Algorithm 3)
P;
M 3 3
}—I(OLV 3 WY ((1752‘)
TN »
I (y ) \fN(W) e 2 2 Filoned) 2
s €4 . Q, €
fi(m) / a, €zl \ €
T y 1 1 Fi |-=---- Fj |===-=-- Fy,
4 : X @
P | ==-=-= P | --=-=- Py -
(Algorithm 2)
(a) Macro level distributed scheme for computing clear- (b) Pico level distributed scheme to evaluate
ing time. O(a, €).

Figure 2.4: Distributed computation of clearing time using message passing algorithms. The circles
represent the allocation functions at the BSs, and the arrows represent the message exchanges. The

numbering on the arrows is the order in which the message exchanges occur. (© 2020 IEEE)

Figure. 2.4(b) shows a distributed implemenation to evaluate the allocation function ®(«, €;). The
scheme can be implemented as follows. The pico broadcasts a message containing the values («, €;)
to the femtos FJl ,Vj € {l,...N;}. Then, each femto F Jl runs the function ¥;(a, €;) locally. Hence, the
femto allocations {Fj(c, e,-)};y:" | can be computed in parallel at the corresponding femtos. Following
the computation, each femto F ]’ sends the evaluation F;(a, €;) to the pico P;. The pico P; then computes
P(Fj(a, 6:')]?21), which completes the allocations z,y. Line 3 of Algorithm 1 determines x.

This implementation is scalable in number of femtos due to local nature of the functions 7—7 The
only increase is in the number of passed messages to the pico which is equal to number of femtos N;.
A similar statement about scalability also holds true for macro-level process shown in Figure. 2.4(a).
The worst case computational complexity of the function ¥; is O((|U j.l +1)log |U j ), and for function
P itis O((|U;| + 1) log |U;)).

The only thing left is the search procedure to find the optimal values(a®,€”). Let 6(a, €) be the
value of the objective function }’,cy. X,/R, under the solution given by ®(a,¢;). If the solution is

infeasible, we take 6(a, €) to be co. Now, (a*,€) := arg minyea ¢ cfor] 6(a, €), and the optimal value
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of LP (2.5), fi(r) is given by
film) = 0(a’, €) (2.6)

The search algorithms and their convergence results are presented in the following section.

2.4 Numerical Results

To illustrate the results, we consider a three tier HetNet with a macro BS, 6 pico BSs and 4 femto
BSs per pico site. The simulation parameters are given in the following tables. The BS parameters

are in the order: macro, pico, femto.

Table 2.2: Simulation Parameters. (© 2020 IEEE)

BS parameters Values

Transmit power 46, 30, 22 (in dBm)

Antenna gain 14, 5, 3 (in dBi)
Path-loss exponent n 3.76, 3.76, 3
Coverage radius 500, 150, 50 (in m)

Log-normal shadowing
10, 6, 6 (in dB)
standard deviation

Parameter Value
Transmission bandwidth 10 MHz
File size D, 2.7 Mb
UE noise figure 10 dB
Noise power -106 dBm
300 m (for pico tier)
Minimum inter-BS distance
90 m (for femto tier)

The macro BS is placed at the origin, the other BS locations are randomly realized in the macro
coverage region such that inter-BS distances are greater than the specified values. We consider
circular cells with the specified radii; a UE receives signal from a BS if within the coverage radius. UE

placement is done in two stages, 5 UEs are uniformly scattered in each femto cell in the first stage, and
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20 UEs are uniformly scattered in each pico cell in the second stage. The path-loss (in dB) formula is

128 + 10nlog,y(d/km), where d is the BS-UE distance.

2.4.1 Search for o*, €

In this section, we focus on the search to find €' and a*. We start by fixing 7 = 0.4 sec in LP
(2.1-2.4), and solve LP (2.5) by finding €" and a*. Recall from (2.6) that fi(7) = 6(a*, €"). 3

For a given ¢;, define a(¢;) := argmingecq 6(a, €) as the a that minimizes the objective function.
We consider a layered search over a,¢. In section 2.4.1.1, the inner search to find a(¢) (shown
in Figure. 2.5(a)). In section 2.4.1.2, the outer search for € (shown in Figure. 2.5(b)). Note that

a* = a(€), hence both o™ and € are derived here.

Input € Input ™
Initialize A’ = A Initialize ¢ =0, el =7
s(eF) sl(QH) < 0 Get a(el), a(el?) from inner search S(Ef)vs(lfaH) >0
- Evaluate s(e), (") &s(e), h(ell)
Set v := median of A’ Convergence (&), h(&) Convergence
Evaluate ©(a,€;) e = | =0
s(el) < 0,5(e#) >0 °
flag=0  flag=1 l
_ seDell —s(el)el_ hle!) — h(ef)
r Set € = 57{1—6{“ - ef—sf
elset_” Check l
Yas 2
I Run the inner search to find «(€;)
>0 Convergence Ya <Oor 2z <0 |_ Evaluate s(¢;), h(¢;)
N — N = I
<0 a(e) =a h(e,)1 0 h(e;) > 0
; Convergence
Under-biased ‘ Over-biased e g €
tmp ‘= tmp ‘=
{o € A :d <a}] {d/ €4 :d >a} Yes
L 4. >D,orz > D l
C
Update one\%er:geer:ce
A= Avmp
|
The else condition here is satisfied via the left arrow when « = Sy, /Ry,

and via the right arrow when 0 <y, < D, & 0 < z, < Dy,

(a) Inner search for a(g;). (b) Outer search for €

Figure 2.5: Search algorithms to find o, €". (© 2020 IEEE)

3There is macro-level search over 7 to minimize 7 + Zf\i | Ji(m) is presented in section 2.4.3. The value 7 = 0.4 < 7*

is chosen such that the constraints are tight, i.e., f;(7r) > 0,Vi. The search is more straightforward when there is slackness.



2.4 Numerical Results 29

2.4.1.1 Inner search for a(¢)

We find the a(¢;) for the given ¢ using inner search in Figure. 2.5(a). Recall that flag; = 11is used
to denote two split users case in Algorithm 2. Define flag := maxj.vz , flagj. One of the following
conditions will hold when the input @ = a(¢;)

i) If flag = 0, then @ = S,,,/R,,,, where w is the split user in Algorithm 3. (See Lemma 2.7.7 in
Appendix 2.7.6)

ii) If flag = 1, then a = S, T/T,Rp, 0 < y, < D, and 0 < 7z, < Dy, where a, b are the two femto
split users in Algorithms 2 & 3. (See Lemma 2.7.6 in Appendix 2.7.5)

When conditions i) and ii) do not hold, either @ > a(¢;) (over-biased) or @ < a(¢;) (under-biased).
Figure. 2.5(a) provides the criteria to check this relation between « and a(¢;), depending on the value
of flag. Using this property, Figure. 2.5(a) performs a binary search for a(¢;) over A. In each iteration,
|Aimp| < |A’|/2, since a is the median of set A”. Therefore, the set of possible a’s is halved in size
during the update A’ := A;,,,. Hence, the convergence time (in steps) is at most log, |A|.

The average convergence times of inner search for the 6 picos are [6.43,5.12,6.25,4.25,6.12,6.12]
steps respectively, where |A| for the picos are [82,82,80,79,76,76] respectively. Here, the averages

are calculated over the input €;’s given by the outer search updates in Figure. 2.6(b).

2.4.1.2 Outer search for el.*

Define h(e;) := 6(a(e), €). Note that h(e;) is the value of LP (2.5) for a fixed given ;. We use the
convexity of A(-) to find €' := arg min, (¢;), using the outer search algorithm in Figure. 2.5(b).

Under the shadow-price interpretation of dual-variables, s(¢;) := dh(e;)/de = @’ — Z;V;'l ,8;., where
a, {B} }j.vzi , are the dual-variables corresponding to the pico-time and femto-time constraints in LP
(2.5). The rate bias multipliers a(;), {8, };.\lzil are equal to the corresponding dual-variables, provided
the corresponding constraint is not slack. When a constraint is slack, the corresponding dual-variable
is zero. (Refer to Appendix 2.7.7 for more details). Note that a(¢;) and O(a(¢;), €) are evaluated by the
inner search algorithm (in Figure. 2.5(a)). The gradient s(¢;) can now be calculated since 1) a(g) is
known, and 2) the allocation [x, y, z] (which determines slackness of constraints) and rate-multipliers
B are given by O(a(e), €).

h(-) is a piecewise linear function (blue curve in Figure. 2.6(a)). Figure. 2.5(b) provides a linear

interpolation based search algorithm to find €" in a finite number of steps. We take a point el.L with a
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0.4\ _ht-)

\ o Points on curve h(.) corresponding
\ to the outer search updates

03[

02F

h(e:)

0.1r

-0.1

* ' k

(a) Outer search updates fori = 1 (b) Convergence of outer search for all the picos

Figure 2.6: Outer search algorithm. Here k is the number of iterations, and el.(k) is the value of ¢ in

kth iteration. (© 2020 IEEE)

negative gradient and a point el.H with a positive gradient and solve for a new ¢; as the ¢-coordinate
of the intersection of tangents (of curve A(-)) at points (¢, h(€")) and (¢, h(e]")). e.g., In Fig 2.6(a),
el.L =0, el.H = 0.4 during iteration 1, and el.(l) is the new ¢. Now, either = € or the point (g, h(€;))
lies on a new line segment of the curve A(-) (See Figure. 2.6(a)). Due to convexity of A(-), € is closer
to the € than at least one of -, €. Finally, either €" or €/ is updated based on the slope s(¢). The
convergence occurs in finite number of steps because the curve /A(-) is composed of a finite number of
line segments.

The convergence results can be seen in Fig 2.6. In Fig 2.6(a), el.L is updated in iterations 1 and 3

(since the slope s(¢;) is negative), and el.H is updated in iteration 2. Figure. 2.6(b) shows the convergence

times (in number of iterations or steps) for all the 6 picos.

2.4.2 Alternate approximate methods and convergence times

The search algorithms given in Figure. 2.5 in section 2.4.1 derive the exact solution (a*, €) in
finite number of steps. The simulation results indicate convergence with in a small number of steps.
However, in practical implementation, issues like delay may impose additional constraints on search
time. In this case, the search can be truncated and last calculated feasible solution can be used, which
lies within € — € distance of the optimal value €.

Alternatively, we now present an approximate scheme with bounded convergence time (in steps).

Here, the parameters «, € are allowed to take values from a predefined finite set, e.g., quantized levels
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for parameters. Let Sy, S¢, denote the sets of values that & and ¢ can take respectively. We present the
modified search algorithms as follows.

For the inner search, the algorithm in Figure. 2.5(a) can be applied with initialization A" = §,,
and stopped when |A’| = 1. The convergence time is log, |S,|. For the outer search, a binary search
version of the algorithm in Figure. 2.5(b) can be applied, where the new ¢ € S, will be chosen as the
median value between el.L and el.H (instead of the intersection of the tangents). Convergence occurs in
log, |Se | steps (when € = €). The total convergence time is < log, |Sy|log, |S|-

Hence, for the approximate scheme with bounded convergence time, the quantization for the sets
Sa»Se; can be chosen based on the latency requirement. In other words, the sizes |S,|, |S¢,| can be

chosen such that < log, |S,|log, |S¢| is less than the latency requirement.

2.4.3 Performance Results of the Minimum Time Clearing Scheme

Recall that there is also a process at macro level (shown in Figure. 2.4(a)) to solve LP (2.1-2.4),
i.e., to derive " := min, 7 + Zl].\i | fi(m). A similar search method to Fig 2.5(b) or traditional methods
such as golden section search, line search can be used to find 7*. Since, our main focus is on LP
(2.5), we have only presented the convergence results for finding f;(7). Now, we present the clearing
time 7 + Zl].\i , fi(r) as a function of 7 (red curve A in Figure. 2.7(a)), and compare with alternative
schemes.

For comparison, we consider schemes A-D given in the following table. Scheme A is the minimum
time clearing scheme of this chapter, which uses full resource partitioning (FRP) between the tiers.
Scheme D has no resource partitioning (No RP) between the tiers, and all the BSs are allowed to
transmit simultaneously. For the other schemes B&C, we consider Almost Blanking Subframes
(ABS) scheme of 3GPP. Under ABS, resource partitioning at macro tier is performed; the macro is
silent during the small cell (or ABS) time. The picos and femtos are taken to use the entirety of
small cell time for transmission. Scheme C uses SINR biased user association, which is equivalent to
the Cell Range Expansion (CRE) scheme of 3GPP. The other schemes A,B&D use rate biased user
association (as explained in the chapter).

Note that the rates under No RP and ABS will be lower (than that of FRP) due to the cross-tier
interference resulting from the simultaneous transmissions of different tiers.

We measure performance in terms of the time required to clear the files of a given set of UEs.
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Table 2.3: Characteristics of HetNet control scheme. (© 2020 IEEE)

Scheme | Resource partitioning UE association rule
A FRP Rate Bias
B; C ABS Rate Bias; SINR Bias resp.
D No RP Rate Bias

Note that smaller clearing time means higher capacity, since more files are transmitted per second.
The schemes A-C are adaptive with respect to the small cell time 7, and hence the clearing time is
minimized over all possible choices of bias values for each 7. Scheme D is fixed. It is optimized over
all possible bias values and has a fixed small cell time 7 (given by optimal biasing). Therefore, the
clearing times presented are the best possible for respective schemes. Note that the clearing time of C
provides a lower-bound to the CRE and ABS schemes of 3GPP. D is a lower-bound to the rate-biased
schemes in [4, 35, 36, 39].

5 —2-D (No RP, Rate Bias)|| 4
—V—C (ABS, SINR Bla.S) —_— -Macro time
— B (ABS, Rate Bias) || 8 350 . .
g4 . @ 9. | Pico time
& WX s s nnssnnsnsns—=A (FRP, Rate Bla.S) A o -Femto time
E ’ S 3
=0l aé
g 225
2 ¥
g2 g
& 2
8 o 1.5F
Ot g
3 1t
E
=]
£05
0 L L E 0
0 0.5 1 1.5 0
small cell time 7 (in sec) A B C D
(a) Clearing time comparison (b) Macro and small cell times

Figure 2.7: Comparison of various user association and resource partitioning schemes. (© 2020

IEEE)

The results are presented in Figure. 2.7. It is clear that the minimum clearing scheme A performs
better than the other schemes by definition. However, the difference is significant in the considered
scenario, as can be observed from Figure. 2.7(a) and Figure. 2.7(b). It can also be observed that
FRP (scheme A) provides significant gain over ABS (scheme B) for rate biased association, and the

difference is even more significant between ABS (scheme B) and No RP (scheme D). This result
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highlights the importance of resource partitioning in HetNets.

Figure. 2.7(b) shows the distribution of macro, pico and femto times across the considered schemes
at their respective optima. Here, pico time (and femto time) is the time available to the picos (and the
femto resp.). Under ABS (B&C), the small-cell time 7 is available to all the picos and the femtos.
For schemes B&C, we illustrate this with two parallel bars (green & blue). Under FRP, recall that the
time available to a F 1’ is €, i.e., it depends on i. For scheme A, the stacked green and blue bars are the
average pico time (m — »}; /N) and femto time (3;; /N) respectively. For D, the macro, pico and
femto BSs are all transmitting at the same time, which is illustrated with three parallel bars (brown,
green & blue). Scheme A has the smallest macro-cell load, followed by B & C. Lack of resource

partitioning in D has resulted in a high macro-cell load.

2.5 Applications and Extensions

Thus far, the framework developed in the chapter has been used to obtain the minimum time
clearing scheme A (FRP, Rate Bias) in section 2.4.3. However, the framework is more general and can
be easily adapted to implement other three tier joint optimization schemes. As a more straightforward
application, the framework can be used to optimize three tier user association under an ABS setup as

follows.

2.5.1 Three HetNet under an ABS resource partitioning scheme

Consider the three tier HeNet (with BS setup described in section 2.2), now operating under the
ABS resource partitioning scheme. Recall (from the section 2.4.3) that under ABS, the picos and
femtos transmit simultaneously during the entirety of small cell time 7. Consequently, UE SINRs
(and rates) from femto F J’ will include the cross-tier interference from pico P; and vice versa. Let the
rates R, S,, T, now denote the rates of user u € Uj. from macro M, pico P; and femto F]’ calculated
under the ABS scheme (i.e., by including the extra resulting interference in the rate equation.)

The minimum clearing time LP for this setup can be formulated as LP (2.1-2.4) with 7 — ¢ in (3.3)
and ¢ in (3.4), replaced by &. Clearly, the framework can be adapted to this joint optimization of ABS
and three tier user association. The optimization is simpler to solve since there is only one resource

variable 7 (and no {e,-}l.]i 1)- Hence, the decomposed LP (2.5) obtained by fixing 7 does not have ¢



34 Optimal User Association and Resource Allocation for Three tier HetNets

as a variable in this optimization. Hence, solution is given by just ®(r,a*). The algorithms provided

can be adapted and applied in the same manner to solve for @(r, ™).

In what follows in the section, we consider several such optimizations of three tier HetNets.
Examples include HetNets involving mmWave femtos and mmWave wireless backhaul, HetNets
involving HAPs. All the main results can be extended to these HetNets as we will show. The
algorithms can be implemented with slight modifications. For the mmWave cells, we consider single
stream MIMO beamforming. The results can be extended to networks with advanced techniques such

as Space Division Multiplexing (SDMA), but are beyond the scope of this chapter.

2.5.2 Three tier HetNet with mmWave BSs

(a) mmWave femto cell (b) mmWave femto cell with mmWave backhaul

Figure 2.8: mmWave Three tier HetNets. (© 2020 IEEE)

Consider a 3 tier HetNet with the femto BSs using mmWave frequencies. Hence, the femtos
experience no interference from the macro or the pico BSs, and require no radio resources from
these cells. Time only needs to be partitioned between the macro and pico tier to avoid cross-tier
interference. We consider a setup where the allocation is performed periodically at the beginning of
each frame. The frame length is A seconds. As before, let 7 < A denote the time allocated to the
small cells, which will now be used exclusively by the pico BSs. Therefore, the pico time constraint

for P; will now be ¥.,cp, yu/Su < 7.
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2.5.2.1 mmMWave link rates

We consider a setup where the femtos do not have a wired backhaul link. Pico BS P; are equipped
with special hardware to provide backhaul over a dedicated mmWave link to each FJ’ The femto BSs

employ beam-forming for serving UEs and for backhaul.

Considera UEu € U j’ in the range of femto Fj’ Let B,, denote the mmWave bandwidth available
for serving UEs. Let PF;- denote the transmit power of the femto BS, and g Flu denote the gain of the
link between F]’ and the UE u, including the beam-forming directivity gain of the BS and the UE, path
loss and shadowing loss. o2 is the noise power. The rate of the link between femto F J’ and UE u is
T, = B, log,(1 + PF;; 8Fiu [ (Dexj Prigpiu+ 2)). Due to the directional nature of the mmWave links,
we assume that co—tier interference Dk Pin 8Fiu < o2 as before. For the blocked UEs, we take 7,
to be zero; these UEs have to associate with a pico or macro BS. We assume that the rate 7, remains

constant for the duration of the frame.

Let S;. denote the rate of the backhaul link between the pico P; and femto F ;, calculated similarly
as T,,. The backhaul link has to carry all the traffic into the femto Fj’ , i.e., ZueU} zy. And, the femto
cannot receive and transmit at the same time due to the half-duplex constraint. Therefore for a femto,
the total time A has to be partitioned between the backhaul and UE transmissions. The femto time
constraint for Fl’ will now be ZueUJg zu/Sj. + ZueU} zu/T, < A. This is equivalent to Zuerg /T, <A,

where

T, =T./(1 + T,/S)) 2.7)

2.5.2.2 Rate requirements

Let a, (in bits/s) represent the rate requirement (or target) of a UE u € U;. We assume that the rate
requirements are set by a scheduler (based on some fairness criterion or a QOS requirement). The

number of bits needed by u in the frame to meet the rate requirement is a,A. Now, the objective of
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minimizing the clearing time of the microwave part of HetNet is formulated as LP (2.8).

min 7+ Z Xu/ Ry

XusYurZum 20 N
”eui:l Ui

s.t. Z Vu/Su < m Vi€ {1,2,... N}

uelU;

Z /T, <AVje{1,2,...Ni}i € {1,2,...N}

ueU;
Xy + Yu + 24 = a,AVu (2.8)

Let A be the value of LP (2.8). Note that when A > A, the rate requirements cannot be met. We
can take the solution (x*,y*, 7*) and scale by A/A to get a feasible allocation for the current frame.
Similarly when A < A, scaling by A/A produces a maximal solution, so that no time is wasted in the

frame.

2.5.2.3 Solution and Algorithms

Note that LP (2.8) is simpler to solve than LP (2.1-2.4) since it has one less variable, € (we have
a constant A instead). As before, fixing 7, the problem can be decomposed into N independent LPs.
The solution of each LP can be found by a 1D search over parameter « at P;.

To apply allocation algorithms in the chapter, firstly, it can be seen that 7,, should be replaced
with T;;. Algorithm 2 and Algorithm 3 can now be applied by modifying the inputs. ;(a™,A) can be
implemented as Algorithm 2 to solve for z* and ﬁ; at femto F ]’ . P(a*,0,z% a,b,6) can be implemented

as Algorithm 3 to solve for y*.

2.5.2.4 Numerical Example

Due to the high rates of mmWave BSs, the value of S;. has a significant impact on 7}, (unlike the
cases where S;. > T,). To illustrate this effect, we consider the same BS setup as in section 2.4,
with the femtos now using mmWave spectrum. 30 UEs are uniformly placed within 50m of each
femto BS. The mmWave simulation parameters are given in Figure. 2.9(b). The results can be seen
in Figure. 2.9(a). In each scenario, there are two throughput values obtained by the UEs. The high
value, 500 Kb/frame corresponds to the UEs with the femtos (using mmWave band). The low values
correspond to the UEs associated with the macro or picos (using the microwave band). The UEs which

receive partial service from more than one BS receives a throughput value between the two.
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UEs at the top, transmitting 500 Kb in a frame are the mmWave UEs, and the UEs at the bottom
are the microwave UEs. Since there is not enough bandwidth to support 50 Mbps rate for all the UEs,

the microwave UEs get scaled down rates. Here, the case Wg = oo corresponds to wired backhaul.

—o-p, =001, Wy=c0 Parameter Value
5001 —e—p, =0.1, W=00
— 450 |——p, =001, W =100MHZ, Femto BS and backhaul Tx power 22 dBm
& g0 Po =0 Wy=l00MHz Femto BS directivity gain 20 dB
2 p, =01, Wy=s0MHz
2350 UE directivity gain 10 dB
5300 r UE throughput requirement a, 50 Mbps
g 208 mmWave pathloss 3GPP UMi Model
i 200¢ mmWave femto bandwidth 50 MHz
=T mmWave backhaul bandwidth W
100
Link blockage probability Db
S0 ‘ RALAS S, Pt ‘ L
0 10 20 30 40 50 60 70 80 90 100 .
Percentage of UEs Frame size A 10 ms
(a) Cumulative distribution of throughput (b) mmWave simulation parameters

Figure 2.9: Effect of backhaul bandwidth and blocking on mmWave HetNet capacity. (© 2020 IEEE)

From Figure. 2.9(a) 4, it can be observed that blocking does not significantly change the solution
of LP (2.8). This is because some UEs need to be offloaded to the microwave BSs anyway, and
blocking just affects which ones are offloaded. In this case, adapting the bias-values based on the
state of blocking only has a minor impact. The proposed scheme can therefore be implemented on
a slower-time scale, with the blocked UEs changing association to microwave BSs using the given
bias-values, and the mmWave femto swaps the blocked UE with an unblocked microwave UE (the one

with the highest p;}).

Secondly, it can be seen from Figure. 2.9(a) that the backhaul bandwidth has a significant impact
on the traffic supported by the mmWave BSs. (2.7) shows that doubling S;. does not double 7). In
Figure. 2.9(a), doubling Wp from 50 MHz to 100 MHz, only increased the number of femto UEs by
~ 10%. We conclude that backhaul bandwidth needs to be accounted for in capacity planning, and

there are diminishing returns from increasing it.

4The curve for Wp = 50 MHz, p;, = 0.01 is exactly the same as the green curve and so not depicted in Figure. 2.9(a)
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2.5.3 Three tier HetNet under fixed resource partitioning - High Altitude Plat-

forms

Consider a 3 tier HetNet where the BSs have fixed frequency assignments, and resource partitioning
is not done in the time domain. This situation can arise when 1) cross-tier and co-tier interference are
small enough that ABS scheme does not provide a major advantage, 2) the network operator chooses
to do apriori fixed frequency partitioning among the BSs, 3) the BSs belong to different operators and
resource sharing is not possible, or 4) There are three tiers of BSs belonging to different technologies,
such as HetNet made up of HAP, LTE and mmWave tiers. In the following, we provide a detailed

application of the framework by considering scenario 4).

HAP

&> G Ground
43> roun
% B < j" ) Station

Figure 2.10: Three tier HetNet with HAP, LTE and mmWave tiers. (© 2020 IEEE)

We consider the 3 tier HetNet (shown in Figure. 2.10) with a HAP M at the top. The LTE BSs
{P; }i]\i , are operating in the coverage area of HAP M. There are N; mmWave BSs {FJ’:};VL , operating
in the coverage are of LTE BS P;. As before, let U; denote the set of UEs that are in the coverage
area of I J’ AUEu € U ; can associate with and download from any of the BSs in {M, P;, F Jl} Let
U := Uj.v;' { U;. denote the set of UEs which are covered by P;. Similarly, U := Ul.[i | Uj is the set of all
the UEs.

The different tiers HAP, LTE and mmWave are on separate frequency channels. Hence, no muting

of BSs to avoid cross-tier interference is required, and the BSs transmit all the time. The rate of the
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link between mmWave BS FJ’ and a UE at site u is given as
T, = Blogy(1 + Prigp, /(07 + | Pogou)) (2.9)
bel}
where B is the bandwidth available to mmWave BSs. P, is the transmit power of BS b, g3, is the gain
of the link between b and the UE u, o2 is the noise power and Iji is the set of other mmWave BSs in
the network which are on the same frequency band as F ]l Similarly, R, (and S,) is the rate at which a
UE atsite u € Ul.i can be served by the HAP M (and LTE BS P, respectively).
We consider the user association problem using the minimum clearing time formulation as the

following LP (2.10)

min T,
XusYusZu T.>0
s.t. Z Xy/Ry < T,
ueUY, Ui
> ulSu < TeVi€ {1.2,... N}
ueU;
3 alTu < To¥j € (L2...Ni}i € {L2... N}
ueU}
Xu + )’u + ly = Tu,Vu (210)

where T, is the clearing time required to satisfy all the UEs. At first sight, LP (2.10) appears
quite different to LP (2.1-2.4). However, similar techniques developed for solving LP (2.1-2.4) can be
applied to decompose the problem here. Consider LP (2.11) formulated for a fixed value of clearing

time 7, > 0.

min Z Xu/Ry
XusYuslu >0

ueUN, U;
S.t.
Z Vu/Su < ToVi€ {1,2,... N}
uel;
> w/Ty < T.Vj € {1.2....Niki € {1.2....N}
ueUJli
Xy +Yu+zu=7,,YuelU 2.11)

Let g(T;) denote the value of LP (2.11) for a given 7.
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Lemma 2.5.1. Suppose g(0) > 0 and let T be the optimal value of LP (2.10). Then, g(T}) =T}.

Proof. First, we show that g(7)) < T}. Clearly, the optimal solution [x*,y*,z*,T] of LP (2.10),

c

satisfies the constraints:

D xR ST

uel

> vilS. < T.Vie {1.2... N}

uel;

Z 2T, < T Yje{1,2,...Ni}i€{1,2,...N}

uel:
J
Xy +y,+z, =T,VuelU

Thus the solution [x*,y*,z*, 7] of LP (2.10) is a feasible solution of LP (2.11). Under this solution,
the objective value of LP (2.11) equals 7'. Hence, g(T)") < T}

Suppose g(T) < T. Define h(T,) = g(T.) — T.,VT. > 0. Since g(.) is a monotonically decreasing
function, it follows that A(.) is a monotonically decreasing function. Also note that 4(0) = g(0) > 0
and W(T}) = g(T})—T} < 0. Since h(.) is a continuous and strictly monotonically decreasing function,
there must exist a unique 7/ : 0 < T/ < T such that A(T!) = 0 (by intermediate value theorem and
monotonicity of h(.)). Thus, g(T) = T.

Let [x’,y’,z’] denote the optimal solution of LP (2.11) given 7/. It follows that the solution

[x’,y’,7'] satisfies

D xR, =T,

uel
Z Yol Su < T, Vi €{1,2,...N}
uelU;
S /T < TLVj € (12, NiJi € {1.2.... N}
uel!
J

4 4 /
X, +y,+7, =T, YueU

Hence, it follows that the vector [x’, y’,z’, T/] is a feasible solution of LP (2.10) with an objective value
equal to T/. It follows that the optimal value of LP (2.10) 7' < T/, which is a contradiction (since

T! < T}). We conclude that g(T77) = T}. ]

Note that g(7,) is a monotonically decreasing function on [0,c0), and T, is a monotonically

increasing function. It also follows that the optimal value 7 (from Lemma 2.5.1) occurs at the



2.5 Applications and Extensions 41

intersection of the curves y = T, and y = g(T¢). If g(T;) = T., we have T, = T;. Otherwise, 1) if
g(T.) > T.,wehave T, < T}, and 2) if g(T.) < T, we have T. > T. Therefore, the optimal 7' can be
found using a simple 1D search on 7.

The only remaining challenge is evaluating g(7,), which is needed for the 1D search. In the
following, we will show that g(7,) can be evaluated using the three tier framework developed in
this chapter. Distributed user association and resource allocation can be performed using the same
algorithms with slight modifications.

To evaluate the value of LP (2.11), g(7;), note that LP (2.11) can also be decomposed into N

independent LPs. Consider the LP involving P; and {F;};V ', as follows

min Z Xu/ Ry
XusYusiu >0

uel;
« constraint : S.t. Z Vu/Su < T,
uel;
B; constraint : Z 2w|T, < T, Vje{l,2,...N;}
uel!
J
v, constraint : Xy + Yy + 2z, =Dy, Yu e U;

i.e., it is LP (2.5) with the term 7 — ¢ replaced by T, and the term ¢; replaced by 7.

It is straightforward that the pico and femto allocation algorithms can be modified and applied here
to find the solution of LP (2.11). The pico allocation algorithm in Algorithm 3, as P(«,T,,z,a,b,0),
can be applied at the LTE BS P;. The femto allocation algorithm in Algorithm 2, as ;(«a,T;), can be
applied at the mmWave BS Fj’ Hence, the distributed scheme shown in Figure. 2.4 can be implemented

to control the user association in the network.

2.5.4 Optimal SINR bias scheme in a three tier HetNet

The resource allocation and user association scheme resulting from the optimization LP (2.1-2.4)
provides the optimal rate-bias scheme for three tier HetNets. However, the insights derived here can
be used to adapt SINR-bias scheme for three tier HetNet.

For such an implementation, the pj; in Algorithm 2 (Femto allocation) should be defined based on
SINR values in absolute scale (instead of rates), e.g., p¢ = min{aAL /AL, AF/AMY, Here AM (AP
and AL) is the SINR value of the signal from macro (pico and femto resp.) to UE u. Similarly, the

ordering and ratios in Algorithm 3 (Pico allocation) should be done based on the SINR-ratio AL /AM
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instead of the rate-ratio S,/ R,. It can be easily verified that the resulting user association must satisfy
the SINR-bias rule.

However, the inner and outer search algorithms provided in the previous section 2.4 cannot be used
to find the optimal 7* and €. This is because the clearing time function (i.e, the minimum clearing
time for a given r,¢) is not guaranteed to be convex under the SINR bias rule. Hence, exhaustive
search may be needed to find the optimal n*,ei*. However, in case of fixed resource partitioning,
the pico and femto algorithms can be applied directly with the mentioned changes to thresholds and

sorting procedures.

2.6 Relation to Capacity and Dynamic Model

In this section, we introduce a dynamic HetNet model with stochastic UE arrivals and file requests.
We consider a packet queueing model and provide the criterion for stability of the model. The system
is deemed to be stable if the queue lengths do not blow up to infinity. We define the capacity region
to be the set of arrival rates for which it is possible to stabilize the system. We will show that the

minimum clearing time LP provides a capacity characterization for the network.

2.6.1 System Model

Consider a dynamic model of the three tier HetNet, with the BS setup described in section 2.2.
There are N pico BSs labelled as {P,-}l.l\; |» operating in the coverage area of the macro BS M. There
are N; femto BSs operating in the coverage area of a pico P;, labelled as {F J’ };vz’ X

We consider a discrete model for the UE locations in the network. The UEs arrive and request a
file at one of the user sites (discrete locations) in the network. They depart from the network once the
file is downloaded. The area covered by the network is divided into user sites as follows. U J’ is the set
of user sites which are covered by the femto F J’ The UEs atasiteu € U ; can associate and download
from M, P; and F j’ . LetU; = U;v;l Uj. denote the set of user sites that are covered by P;3. Similarly,

letU := Uf.\i , Ui denote the set of all user sites. The UEs arrive at a site u € U ; as a stochastic process

as follows. We consider a slotted model, and ¢ € N denotes the slot. We assume that the number of

5Similar to section 2.2, we do not explicitly model the user sites that have no femto connectivity and only have coverage
from a pico P; and macro M. This is done for the sake of a cleaner treatment. However, the justification provided in

footnote 1 also applies here.
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arrivals in a slot (at a site ) is independently and identically distributed (i.i.d) as a poisson random
variable with mean 4,. Upon arrival at u, a UE requests a file download of size D, packets. We
assume that the requested file sizes at a site u are i.i.d with a mean D, packets. Let A,(¢) denote the
number of packet arrivals at a site u in slot ¢. Further, we assume that the arrival processes {A,(7)},

are independent across the user sites u € U.

As in section 2.2, no two BSs in the set {M, P;, Fj’} are allowed to transmit simultaneously due to
the resulting cross-tier interference at receiving UEs. Similar to section 2.2, let R, (in packets/slot)
denote the rate of the link between macro M and UEs at site u, provided P; and F/ ]’ are silent. Similarly,
let S, and 7, denote the pico and femto rates for UEs at site u. Here, [Ry, S,,T,] € Zi, i.e., the rates (in
packets/slot) are positive integers. (An alternate interpretation of user site u can be as a class of UEs
which have the downlink rates given by the rate triplet [R,, S,,T,]). A UE departs from the network
when it downloads the file completely. As before, we allow for multi-connectivity and a UE can be

served by any BS that is in its range, possibly download a part of the file from each available BS.

Let Q,(t) € Z, denote the number of packets at site u at the beginning of slot z. We denote the state
of the system at slot ¢ as Q(t) = [Q,(t)].cy- In a slot, we assume that a BS can serve at most one site u.
At time ¢, a scheduling policy can allocate the slot to a set of non-interfering BS-UE pairs, such that
the cross-tier interference constraint is not violated, i.e., no two BSs in {M, P;, F ;} can be active in the
same slot for any i € {1,2,...N},j € {1,2,...N;}. Let s(t) = [s\"(t), sP®), s¥(1)]uer € {0,1}3V

denote the schedule in slot ¢. For a user site u € U ;'.,

) 1 if macro M is scheduled at site « in slot 7.
s, (1) = (2.12)

0 otherwise

) 1 if macro P; is scheduled at site u in slot 7.
s, (1) = (2.13)

0 otherwise

1 if macro F j’ is scheduled at site u in slot 7.

SO () = (2.14)

0 otherwise

To ensure feasibility i.e., such that the constraints hold, the scheduling policy must satisfy (2.15).
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Z s + Z s@@) + Z Dy <1Lvie{l,...,NLje{l,...,Ni} (2.15)
uel uel; ueU]i,
Let S € {0,1}31Y! denote the set of all feasible schedules s such that the constraints in (2.15) hold.

We consider stationary scheduling policies which chooses s(7) only based on the state of the system

Q(1).

Definition 2.6.1 (Deterministic stationary scheduling policy). A deterministic scheduling policy 6 :

ZLU| — 8 is a mapping from the state Q € Q to a feasible schedule s € S.

Definition 2.6.2 (Randomized stationary scheduling policy). Under a randomized scheduling policy,
given the state Q € Q, the schedule is the output of a random variable X with a probability distribution
Po on S. The distribution Py depends only on the state Q. In each slot t, the choice of schedule is

made independently.

The queue evolution equation at site u € U ; is given as follows

Qult +1) = (Qult) + Aul0) = Rust (1) = Susi(6) - TusP (1)) 2.16)

where (a)* = max{0,a}

Note that since [Ry,S,,T,] € Z3, the state Q(¢) € ZTU'. Given the schedule s(¢) and arrivals
{Au()}uev in slot ¢, the state Q(¢ + 1) in slot 7 + 1 is fully determined. It follows from the assumptions
on arrival processes, that the state process {Q(7)},°, is a Markov chain under a stationary scheduling

policy.

Definition 2.6.3. The system is stable under a scheduling policy if and only if

T-1
lim 3" > E[QuO)/T < e (2.17)

t=0 uelU
Definition 2.6.4. The system is stabilizable if and only if there exists a resource allocation policy 0

under which the system is stable.

Let A := [A,]ueu denote the arrival rate vector. Let A denote the set of all arrival vectors for
which the system is stabilizable. In the following section, we will provide a minimum clearing LP

formulation for a given 4 € R,V as LP (2.18). We will show that whenever the value of LP (2.18)
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is less than 1, A is interior to A. For this case, we will also provide a randomized scheduling policy
which will stabilize the system. We will also show that whenever the value of LP (2.18) is greater than
1, A is exterior of A. Thus, we provide characterize the stability region A using minimum clearing LP

(2.18).

2.6.2 Stationary randomized scheduling policy and LP formulation

Consider an equivalent formulation of LP (2.1-2.4) as the following LP (2.18).

min 7+ Z Xu/ Ry
>0

XusYysZuT0Ei uel
s.t. Z Vu/Syu <m—¢,Vie{l,2,... N}
ueU;
Z 2T <€ Vje{l,2,...N;},i € {1,2,...N}
uelUt
J
Xu+VYu+2u=ADy, YuelU (2.18)

The variables in LP (2.18) have different units compared to the ones in LP (2.1-2.4). Here, A, is
the mean arrival rate (in users/slot), D, is the mean file request size (in packets/user). R, ST}
are the macro, pico and femto rates (in packets/slot). Hence, x,,y,,z, are in packets/slot. And,
7T, €, Xu/ Ry Yu/Su, 74/ T, are unit-less quantities (which will be interpreted as probabilities in the
following).

Let [x*,y",z*] denote the optimal solution of LP (2.18) for a given A. Suppose that the optimal
value 7 + ) ey X /Ry < 1. We will now propose a stabilizing randomized policy corresponding to
the optimal solution. Consider the scaled feasible solution of LP (2.18) derived as follows.

[X;, yZ’ Z;]MEU
T+ ZMEU x;/Ru

[xua Yus Zu]uéU =

*

T
T = " " R
T+ Yyeu Xul Ru
el.* ]
€ = = 1,...,N

o1
T+ ZueU x;/Ru

From construction, the scaled feasible solution satisfies 7 + >,y x,/R, = 1. A randomized
scheduling policy can be constructed using this solution as follows. During a slot ¢, the macro is

scheduled with probability 1 — 7 = ¢y X,/ Ry. Suppose the macro is not scheduled in the slot, then
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for each i € {1,... N}, the pico P; is scheduled with probability (7 — ¢)/7 (independently across the
picos). If both macro and pico P; are not scheduled in slot #, then the femtos F ]’ are scheduled.

Given that the macro is scheduled in slot 7, the random policy chooses site u € U with probability
(xy/Ry)/(1-m),ie., P[s,(ll)(t) = 1|macro is scheduled is slot 7] = (x,/R,)/(1—n). This is feasible since
2ucy *u/ Ry = 1 —m (because [x,y,z,, {6,-}1.1\; ] is a feasible solution of LP (2.18) from construction).

Similarly, given that pico P; is scheduled in slot #, the random policy chooses site u € U; with
probability (y,/S,)/(7 — €), i.e., P[sgz)(t) = l|pico P; is scheduled is slot ] = (v, /S,)/(m — €). This
is feasible since ey vu/Sy < 7 — € (because [x,y,z,7, {ei}l.l\i ,] is a feasible solution of LP (2.18)
from construction).

Similarly, given that femto F]’ is scheduled in slot ¢, the random policy chooses site u € U;. with
probability (z,/T,)/€, ie., P[s,(f)(t) = 1|femto F]‘ is scheduled is slot 7] = (z,,/T,)/€. This is feasible
since Y ,cy zu/Tu < € (because [x,y,z, 7, {¢€ }f\; ] is afeasible solution of LP (2.18) from construction).

It can be noted that under the proposed randomized policy, probability that the queue Q, atu € U ;
gets served by macro M equals x,/R,. Similarly, probability that Q, at u € U ; gets served by pico P;
(and femto FJ’ ) equals y, /S, (and z,, /T, respectively). Since the three events are mutually exclusive, it
follows that in each slot ¢, the queue Q, atu € U ; gets served at an expected rate of x, + y, + z, packets
per slot. From construction, we have x, > x,,, y, > y;,, zu > z,,, Yu € U. Hence, x,, + y, + 2, > A,D,.

Therefore, the expected rate of service x, + y, + z,, at each site u is greater than the arrival rate
of packets A,D,. In Theorem 2.6.1, we will show that this condition implies that the system is stable

under the proposed randomized policy.

Theorem 2.6.1. Let n* + ZMEU{YI X/ Ry denote the optimal solution of LP (2.18). Then,
1) The system is stabilizable if t* + },cyy X, /Ry < 1

2) The system is not stabilizable if 7 + ,cy x;, /R, > 1.

Proof. 1) We will show the stability of the proposed randomized policy. Recall that the under the

randomized policy, the expected rate of service x,, + y, + z,, > A,D,. Tt follows that

E[Qu(t + 1) = Qu()IQ1) : Qu(t) > max{R,,S,,T,}] (2.19)
= E[A(0)] - RP[s$"(0) = 1] = S,P[sP(1) = 1] - TP[s (1) = 1] (2.20)

=A,Dy— (xy +yu+2,) <0 .21
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Define
-k = ma&( AuDy = (xy + yu + 2) (2.22)
ue
Let the function V(Q(?)) := ¥,cy Q2(¢), and consider the drift

E[V(Q( + 1)) - V(Q©)IQ(1)] = Z E[(Qu(t + 1) = Qu(1)* |Q()]+

uelU

2> OuDE[Qu(t + 1) = Qu(1)|Q(1)] (2.23)

uelU
Note that E[(Qu(t + 1) — 0.(1)* |Q(1)] < E[A%(t)] + (max{R,,S,,T,})>. Since the number of UE
arrivals in a slot is a poisson random variable, and file size is bounded by D,,, we have E[A2(t)] < oco.
Hence, there exists C > 0 such that

E[V(Q@+ 1) -V(Q0)IQ(WN] < C+2 Z Qu(E[Qu(t + 1) = Qu(1)IQ(1)] (2.24)

uelU
Consider the term Q,(t)E[Q,(t + 1) — Q,(?)|Q(t)]. Let B, = max{R,,S,,T,}. It follows from

(2.21) and (2.22) that

QuE[Qu(t + 1) = Qu()IQ(1) : Qu(t) = By] < —k1Qu(1) (2.25)
< /luDuBu + k1B, — leu(I) (226)

Note that E[Q,(t + 1) — Q.(1)|Q(1)] < E[A.(t)] = A,D,. It follows that

QuE[Qu(t +1) = Qu()IQ(?) : Qu(t) < Bu] < 4,DyB,, (2.27)
< XDy By + k1 By — k1Qy(t) (2.28)

Hence, it follows from (2.26) and (2.28) that Q,(1)E[Q,(t + 1) — Q,()|Q(?)] < A,D,B, + ki B, —
k1Q,(t). Substituting this in (2.24), it follows that,

E[V(Q@+1)-V(Q@)Q®)] < C+2 Z Qu(E[Qu(r + 1) = Qu()]Q(1)] (2.29)

uel

< Cy = 2k Z 0.(1) (2.30)

uel
where C; = C +21,D,B,, + 2k, B,,.
Taking summation from¢ = 0to7T—1, we have E[V(Q(T))-V(Q(0))] < TC;—2k;, Zth_ol Yucv E[0L(D)].
Therefore, IT:_OI Yuev E[Qu(H]/T < C1/2k1 + E[V(Q(0))]/2T k. Taking limit T — oo, we have
=
lim — Z Z E[0.(1)] < C1/2k 2.31)

T T
- t=0 ueU
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Hence, 1) is proved.

For 2), consider an arbitrary scheduling policy. Let X,(¢) denote the total number of packets served
by the macro M at site u € U;. until slot 7. Similarly, let Y,(¢) (and Z,(¢)) denote the total number of
packets served by the pico P; (and the femto Fj’ resp.) at siteu € U ; until slot z.

Consider the macro M, a pico P; and a femto F' ]’ . No two of these BSs can simultaneously transmit
during any slot. Hence, the X, (¢) packets of macro, Y, (#) packets of pico and Z,(¢) packets of femto

must have been scheduled in separate slots in {1,...,7}. Therefore,

ZXM(I)/RM + Z Y (£)/S, + Z ZWO))T, <tVie{l,...Ny,je{l,...Ni}  (2.32)

uelU ueU; uel’
J

— qu(t)/Ru + Z Vu()/ S + Z 2u(0))Ta < L¥i € {1,...N},j € {1,...N;} (2.33)

uelU uelU; uelt
J

where x,(t) := X,(t)/t, y,(t) := Y,(¢)/t and z,(¢) := Z,(¢)/t. Note that the inequalities (2.33) can be

written as constraints and the objective of LP (2.18) by defining €;(¢) and n(¢) as follows

a(1) = r?’Zafc Z[]:i 20 TuVi € {1,... N} (2.34)
() = ZU] 3u(0)/Su + miax (1) (2.35)

It follows from (2.33, 2.34, 2.35) that [x,(t), v.(?), z.(t)]uecv, €(t), 7(¢) satisfies

(t) + Z xu(t)/Ry < 1

uel

D S < 7t - &), i € {1,... N}

uelU;

D )Ty <€), j e {l,...,N}yi€{l,...,N}
uel:

Now consider x,(¢) + y,(t) + z.(t). Suppose x,(t) + v.(t) + z,(t) > A,D,,Yu € U. Let ¢, :=
W < 1,Yu € U, which implies ¢,x,(t) + ¢,yu(t) + ¢uzu(t) = A,D,,Yu € U. Note
that [, x,(2), ¢y yVu(t), duzu(t)]uecv, €(t), m(t) forms a feasible solution of LP (2.18) such that n(r) +
Yucr Puxu(t)/R, < 1. This is a contradiction since it is given that the optimal value of LP (2.18) is

greater than 1.

Hence, for any ¢, 3u € U such that x,(t) + y,(t) + z,(t) < A4,D,. Let H denote the set of all the
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solutions ([x, y, Z],ev, 7T, €;) Which satisfy (2.36-2.38).

™+ Z Xu/Ry < 1 (2.36)
uelU

Zyu/SMSJT—e,-,Vi: L,...,N (2.37)
uel;

D alTu s eVje{l,. N}hie{l.....N} (2.38)
uelt
J

Since it is given that the optimal value of LP (2.18) is greater than 1, it follows that for each solution
in H, 3u € U such that x, + y, + z, < A,D,,. Define
—k := sup inf x, + y, + z, — A, D, (2.39)
(l'{s uel

Note that [x,(2), y.(1), zu(t)]ucv is @ member of H for any sample path on arrival and file size
processes. It follows that [E[x,(¢)], E[y.(?)], E[z.(t)]],cy is also a member of H. Hence, there exists
u € U such that ¢ (4,D, — E[x,(t) + yu(t) + z4(t)]) > kt. Note that Q,(r) = Q,(0) + A, () — 1(xu(r) +
vu(t) + z4(t)). Hence, 3u € U such that

E[Qu(1)] = E[Qu(0)] + (A Dy = E[x4(1) + yu(?) + z4(1)]) (2.40)

> E[Qu(0)] + kt (2.41)

Hence, 3,y E[Qu(1)] > kt,Vt. It follows that 3./ ey E[Qu(t)] = kKT(T — 1)/2. Hence,

T-1
Jim 3> E[Qu0]/T = o (2.42)

t=0 uclU
Since the choice of policy was arbitrary, it follows that system cannot be stable under any policy,

which proves 2). [

2.7 Theoretical Results

2.7.1 Proofs of Theorems 2.3.1-2.3.3

We develop the necessary theory in Appendices 2.7.2-2.7.7. The results will be used in the proofs
here. The layout of other Appendices is as follows. In Appendix 2.7.2, we introduce the Lagrangian

and the dual-variables corresponding to LP (2.5) and derive structural results of the optimal solution
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using the KKT conditions. In Appendix 2.7.5, we present the femto allocation results using the KKT
conditions. We justify Algorithm 2. In Appendix 2.7.6, we present the pico allocation results and
justify Algortithm 3. The results of Appendices 2.7.5-2.7.6 were derived under the assumption that

the dual variable @ > 0. In Appendix 2.7.7, we deal with the case when dual variable @ = 0.

Proof of Theorem 2.3.1. Suppose the dual-variables @, 8; > 0,V € {1,...N;} for = €. The proof
of (1-3) of Theorem 2.3.1 follows from (2.43-2.46) of Appendix 2.7.2. The results of Figure. 2.3
follow from Lemma 2.7.1 and Lemma 2.7.2 in Appendix 2.7.2.

Suppose one or more of the dual-variables «, B; are zero for € = €. It follows from Appendix 2.7.7,
that there exists a,, and ,8;.” corresponding to the zero dual-variables such that (1-3) of Theorem 2.3.1
hold. Now, the results of Figure. 2.3 follow from Lemma 2.7.1 and Lemma 2.7.2 with a (and ;)
replaced with a,, (and ﬁ;?’ resp.). [

Proof of Theorem 2.3.2. Suppose the dual variable @ > 0 for ¢ = €. If Pico allocation case 1 (in
Appendix 2.7.6) holds, then @ = S, /R,, is an optimal dual-variable from Lemma 2.7.7. If Pico
allocation case 2 (in Appendix 2.7.6) holds, then a = S,T},/T,R;, from Lemma 2.7.8.

Suppose the dual variable @ = 0 for ¢ = €. It follows from Appendix 2.7.7 that 3, € A such
that 8(a,,, ;) = 0. Here, a* = a,,.

Similarly, suppose the dual-variable g; > 0 for ¢ = €. Then ,B;f = p% from Appendix 2.7.5.
Otherwise if dual-variable 5; = 0, ﬂ;ﬁ = rninuerg py, is the rate-bias multiplier ,87 from Appendix 2.7.7.

]

Proof of Theorem 2.3.3. Suppose the dual variable @ > 0 for ¢ = €. It follows from Lemmas 2.7.4-
2.7.6 that Algorithm 2 determines z* with a,€" as input (See Appendix 2.7.5). It follows from
Lemmas 2.7.7-2.7.8 that Algorithm 3 determines y*. (See Appendix 2.7.6)

If @ = 0, the proof follows from Appendix 2.7.7. [

2.7.2 KKT conditions and Lagrangian minimization

For the given 7, we start by fixing ¢ € [0, 7]. We consider LP (2.5) for the given x, ¢;°.

Let g(m,€;) denote the solution of LP (2.5) for the given pair (7r,¢;). Note that f;(wr) = ming¢[o,x] &(7,€;), and

e,'* = arg ming; ¢[0, ] g(m,€).
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Consider the Lagrangian L of LP (2.5), given as

L(x,y.2,0.8,7) = D Xl Ru+ () yu/Su+ & =)

uel; uel;
N;
+ Zﬁ](z Zu/Tu — €) — Z Yu(Xu + Yu + 2 — Dy)
J=1 ueU} ueU;
where «, B; and vy, are the dual variables corresponding to the constraints of LP (2.5) (see page 20).
For a fixed (7, ¢;), LP (2.5) is equivalent to the Lagrangian minimization problem min,, . ..>0 L
with the optimal dual-variables. The KKT conditions provide sufficient conditions for optimality of

the primal and dual variables.

2.7.3 Stationarity conditions

From the first order stationarity conditions of the KKT conditions, we must have
OL/0x, =1/R,—7y, >0 (2.43)

andvy, = 1/R, if x, > 0. i.e., minimum occurs either at a stationary point or at a point on the boundary.

Similarly, we have

oL/dy, =a/S,—y,>0andy, =a/S,ify, >0 (2.44)

OL/0zy = Bj/Ty — Yy 2 0and y, = B;/T,if z, > 0 (2.45)

Using (2.43-2.45), v, < min{l/R,,a/S,.B;/T,}. Since x, + y, + z, = D, > 0, at least one of

Xu, Yu» Zu > 0 and hence, at least one of the equality conditions of (2.43-2.45) must hold. Therefore,

Going forward, we take x,, y,, z, to be the solution of LP (2.5) for the given fixed r, €;, and «, 5}, y.,

to be the optimal dual variables, i.e., KKT conditions hold for these values.

Assumption 1. For any u,v € U; and u # v, we assume that 1) T,,/S, # T,/ Sy, 2) Su/R, # Sy/R, and
3)Tu/R, # T,/R,. Furthermore, for any (u1,vy) # (uz,v2) € U; X U;, we assume that S, T,, | R, Ty, #
Su Ty, /Ry, Ty,.

Note that the rates R, S,,, T, are arbitrary real values, and Assumption 1 holds with probability 1.
For the sake of brevity, we ignore the highly special cases where Assumption 1 does not hold, e.g., a

case where two different UEs have exactly the same rate-ratios mentioned in Assumption 1.
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2.7.4 Lemmas on relationship between primal and dual variables

Recall that p% := min{7,/R,,aT,/S,} from Theorem 2.3.1. Proofs of the following three lemmas

are direct consequences of the stationarity conditions (2.43-2.46).

Lemma 2.7.1. Suppose the dual variable « > 0. Then
1) zy = Dy, if p; > Bjand 2) z, = 0, if py < B

Proof. Suppose p§ > ;. This implies 8;/T, < min{1/R,,a/S,}. From (2.46), we have v, = B;/T,
and y, < min{l1/R,,«/S,}. Now from (2.43-2.44), we have x, = 0,y, = 0, and hence z, = D,.
Therefore, p;; > B; implies z, = D,.

Now suppose p§; < B;. This implies 3;/T,, > min{1/R,,a/S,}. From (2.46), B;/T, > y.. Now

from (2.45), we have z, = 0. Therefore, p;; < ; implies z,, = 0. L]

Lemma 2.7.2. Suppose D), := D, — z, > 0 for some u € U;. Then
1)y, =D, if Sy/R, >aand2)y,=0,if Sy/R, < a.

Proof. Suppose S,/R, > a. This implies 1/R, > a/S,, and hence y, < 1/R, from (2.46). We have
x, = 0 from (2.43). Therefore, y, + z, = D,. This proves 1).

For 2), suppose S,/R, < a. This implies 1/R, < «/S,, and hence y, < a/S, from (2.46).
Therefore, y, = 0 from (2.44). ]

Lemma 2.7.3. Consider a user u € U; 1) If x;,y, > 0, then « = S, /R,. 2) If yu,zu > O, then
Bj = py = al,/S, and 3) If 7, x, > O, then ; = p;y = T,/R,.

Proof. Suppose x,,y, > 0. From (2.43-2.45), we have vy, = 1/R,, y, = a/S,. Therefore, @ = S,/R,.
This proves 1).
Suppose yy, 2, > 0. From (2.43-2.45), we have y, = a/Sy, yu = Bj/T, . Therefore, g; = aT,/S,

3) can be proved using similar arguments. 0

2.7.5 Femto Allocation

In this section, we present the femto allocation [z,],;: for an arbitrary j € {1,...N;}. We will
J
show that Algorithm 2 determines the femto allocation. This is done under the assumption that the

dual-variable @ > 0. The other case @ = 0 is done in Appendix 2.7.7.
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Assume a > 0. Recall that p¢ := min{7,/R,,aT,/S,}. Sort users uy in U ; in descending order of
p% such that pj > oy > ... > pj, . Here K = |U§|. pﬁkl = pgkz for at most one pair ky, ko such that
1 < k1 < ky < K (otherwise Assumption 1 is violated). Therefore, exactly one of the following three
cases must hold

Case 1 (No split users case): Here (2.47) holds

K
Z D, /T, <& (2.47)
k=1

The femto allocation for this case is given in Lemma 2.7.4, which justifies step 3 of Algorithm 2.

Case 2 (Single split user case): 3/ < K such that

-1 1

1) > Duy /Ty < & < ) Dy /Ty (2.48)
k=1 k=1

2) p% # p Yk € {1,2,... K} — {1} (2.49)

The femto allocation for this case is given in Lemma 2.7.5, which justifies step 4 of Algorithm 2.
Case 3 (Two split users case): 3/ < K — 1 such that

-1 [+1
1) ; Dy /T, < & < ; Dy, /Ty, (2.50)

2) Puy = Py, (2.51)

For the two split users, w.1.0.g assume pj;, = aTy,/S,, and Py = Ty, /Ry, Definea := u;, b 1= ujq
and 0 ;= ¢ — 2;11 Dy, /Ty, . Here, a is the pico-femto split user and b is the macro-femto split user.
The femto allocation for this case is given in Lemma 2.7.6, which justifies step 5 of Algorithm 2.

Note that z,, z; are not given by Lemma 2.7.6, and will be given in Lemma 2.7.8.
Lemma 2.7.4. Suppose a > 0 and (2.47) holds. Then z,, = D,,,V1 < k < K and 3; = 0.

Proof. We use proof by contradiction to show that z,, = D,,,V1 < k < K. Suppose not and assume
Zu, < Dy, forsome 1 < p < K. Since z,, < Dy,,Yk # p, we have Zle Zu [ Tu, < Zle Dy /T, <€
from (2.47). Therefore g; = 0 from complementary slackness. If 8; = 0, we have Zu, = Du, from
Lemma 2.7.1, which is a contradiction to the assumption. Hence, z,, = D,,,V1l < k < K. Now
if the inequality in (2.47) is strict, Z[k(:l 2 /Ty, < €&, and B; = 0 from complementary slackness.

Otherwise, if the equality in (2.47) holds, the KKT conditions hold for any g; € [0, oy, |. U
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Lemma 2.7.5. Suppose @ > 0 and 3l < K such that (2.48),(2.49) hold. Then B; = pj, and

Dy, for1 <k <l-1

Zuye =Ty, (6 — 221 Dy,/T,,) fork=1I

0 forl+1<k<K

Proof. 1) Firstly, we show that z,, = D,,,V1 < k <[ — 1 using proof by contradiction.

Suppose not and assume z,, < Dy, forsome 1 < p </ —1. Note that p;; < 8; from Lemma 2.7.1.
This implies B; > pf;, > p] from (2.49). Therefore, z,, = 0,¥l < k < K from Lemma 2.7.1. This
implies Zle g [Ty, < 22;11 D, /T, < € from (2.48). Therefore, §; = 0 from complementary
slackness. Observe that §; = 0 implies Zu, = Dy, from Lemma 2.7.1, which is a contradiction to the
assumption z,, < D, . Hence, z,, = Dy,,¥1 < k <1 -1.

2) Now, we show that z,, = 0,VI/ + 1 < k < K using proof by contradiction.

Suppose not, and assume z,, > 0 for some / + 1 < p < K. This implies 8; < py. Therefore,
Py, > P, = Bj from (2.49). Therefore, z,, = Dy,,Y1 < k < [ from Lemma 2.7.1. This implies

11{(21 Zu [Ty = Zi:l D, /T, > € from (2.48). This violates the primal constraint that Zle Zu [Ty, <
€, which is a contradiction. Hence, z,, =0,VI+1 < k < K.

3) We now show that 5; > 0 and determine z,,.

Suppose not, and assume g; = 0. We have z,, = D,, from Lemma 2.7.1, which implies
Zl,le Zu. /Ty, > € from (2.48). This is a contradiction since it violates the primal constraint that
Zle 2 /Ty, < €. Hence, B; > 0, which implies Zle 2. /Ty, = € from complementary slackness.
Substituting the other values, z,, = T,,(& — 5{;11 D, /Ty)

Note that when the left inequality of (2.48) is strict, 0 < z,, < Dy, which implies g; = pj; from
Lemma 2.7.3. Otherwise, if the equality holds in the left inequality of (2.48), the KKT conditions
hold for any B; € [py, py,_, |- [

Lemma 2.7.6. Suppose a > 0 and 3l < K — 1 such that (2.50),(2.51) hold. Let a := u;, b := u;+1 and

0:=¢€ — 2;11 Dy, [Ty, W.lo.g, let p§ = aT,/S, and Py = T,/ Rp. Then

D, forl<k<l-1
Zup =

0 forl+2<k<K

ZalTa + 26/Tp = 6, @ = S,Tp/TaRp, and Bj = Pg-
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Proof. It can proved that z,, = D, ,V1 < k <[-1and z, = 0,Vl+2 < k < K using similar
arguments as in the proof of Lemma 2.7.5.

Note that p; = pj implies a7, /S. = Tp/Rp. Hence a = S, T,/ RpT,.

It can proved that 5; > O using similar arguments as in the proof of Lemma 2.7.5. From
complementary slackness, Zf: 1 Zu /Ty, = €. Substituting other z values, we have z,/T, + z,/T, = 6.

Note that 6 < D,/T, + Dy, /T, from the right inequality of (2.50). This implies either z, < D,
or z, < Dp. Therefore, B; > pg = p} from Lemma 2.7.1. Suppose the left inequality of (2.50) is
strict, then 6 > 0. This implies at least one of z,,z, > 0, we have §; < p = p} from Lemma 2.7.1.
Therefore, §; = p; when the left inequality of (2.50) is strict. Otherwise, if the equality holds, the
KKT conditions hold for any B; € [pog, o} 1. ]

2.7.6 Pico Allocation

We will present the pico allocation y, for u € U; under the assumption @ > 0. The other case
« = 0 is done in Appendix 2.7.7. Let D), := D, — z,, denote the residual file after the femto allocation
for u € U; — {a,b}. Recall that a, b are the split users from (2.50 -2.51) in Appendix 2.7.5.

Let W denote the set of u € U; — {a,b} such that D], > 0, i.e, positive residual file sizes after
femto allocation. Sort the users wy € W such that S,,, /R, > ... > Swiw| / RW|W|. We determine pico

allocation y,,, for k € {1,...,|W|} as the following two cases.

2.7.6.1 Pico allocation case 1

Suppose conditions (2.50-2.51) do not hold for any j € {1,...N;}, i.e., Case 3 (Two split users
case) in Appendix 2.7.5 does not hold for any j. Here, {a, b} = ¢.
Since a > 0, we have ¥ ,cp. yu/Su = Z',Z'l Ywi/Sw, = m— € from complementary slackness. And,

3l < |W]| such that
-1 l
Z D), [Sy <7T—€ < Z D), /S, (2.52)
k=1 k=1

The following lemma provides the pico allocation for this case and justifies step 5 of Algorithm 3.
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Lemma 2.7.7. Suppose @ > 0 and {a,b} = ¢. Also, suppose that (2.52) holds for 1 < |W|. Then

Dy, for1 <k <l-1
Y =\ Sy — & = D41 D,/ Sw)  fork =1
0 forl+1<k < |W|

Moreover, @ = S,,,/ Ry,

Proof. Firstly, we show that y,, = D;, ,V1 < k <[ — 1, using proof by contradiction.

Wi

Suppose not, and assume y,,, < D;Vp for some 1 < p <[ - 1. Note that this implies S,,, /Ry, <
from Lemma 2.7.2. Therefore, S,, /Ry, < @,Vp+1 < k < |W|. Therefore, y,, = 0,Vl < k <
|W|. This implies Z'kﬂ Y/ Swp < ShY Dy, /Sy, < m — € from (2.52). Therefore, @ = 0 from
complementary slackness, which implies y,,, = D;Vp from Lemma 2.7.2. This is a contradiction to

the assumption y,,, < Dy, . Hence, yy, = D}, ,V1 <k <1-1.
Now, we show that y,, = 0,Vl + 1 < k < |W|, using proof by contradiction.

Suppose not, and assume y,,, > 0 for some / + 1 < p < [W/|. Note that this implies S,,, /Ry, > «

from Lemma 2.7.2. Therefore, S, /R,,, > @,V1 < k < p— 1. Therefore, y,, = D;, ,V1 < k <[ from

Wi
Lemma 2.7.2, which implies Z'ka'l Ywe/Swe = 25{:1 D(Vk [Sw, + Yw, /Swp > 1 — ¢ from (2.52). This
violates the primal constraint that Z';Z'l Ywy /Sw, < m— €, which is a contradiction.

If the right inequality in (2.52) is strict, then 0 < y,, < Dy, and x,, > 0. Hence, @ = S, /Ry,
from Lemma 2.7.3. Otherwise, if the equality holds in (2.52), the KKT conditions hold for any

@ € [SWH]/RWH]’SWI/RWZ]- D

2.7.6.2 Pico allocation case 2

Suppose conditions (2.50-2.51) of Case 3 (Two split users) hold for some j € {1,...N;} (See
Appendix 2.7.5). Lemma 2.7.8 provides the pico allocation for this case, and justifies step 7 of
Algorithm 3.

Lemma 2.7.8. Suppose a > 0 and conditions (2.50-2.51) of Case 3 (Two split users) hold for some
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JjeA{l,...N;} (See Appendix 2.7.5). Then a = S,Tp/T, R}, and

D;Vk forl1 <k <l
Ywp =

0  forl+l1<k<|W|

l
Ya = Sa(ﬂ' — € — Z D:vk/ka)
k=1
vb=0,2,=Dg—vs & 2 = Tp(6 — 24/T,) . Further, (2.50-2.51) do not hold for any j' # j .

Proof. Note that @ = S,T/T,R;, from Lemma 2.7.6. Due to Assumption 1, S, /R, # @,V1 < k <
|W|. Therefore, 3/ < |W]| such that S, /R, < @Vl < k <[landS,, /R, > Vli+1<k<|W|.

Therefore, y,, = D;, ,Y1 < k <landy,, =0,V +1 <k <|W|from Lemma 2.7.2.

Wi

It remains to determine y,, z,, V5, Z». Recall from Lemma 2.7.6 that p‘g =Ty/Ry < aTp/Sp, which
implies Sp/Rp < a. Therefore, y, = 0 from Lemma 2.7.2.

Since @ > 0, we have X ,cy. Yu/Su = m — € from complementary slackness. Substituting other y
values, we get y, = S,(m — € — 22:1 Dy, [Sw)-

For determining z,,zp, recall that p¢ = a7,/S, < T,/R, and hence 1/R, > 7y, from (2.46).
Therefore, x, = 0 and z, = D, — y, from (2.43). Now z;, can be determined from z,/T, + z/Tp = 6
(See Lemma 2.7.6 from Appendix 2.7.5).

Lastly, we prove that (2.50-2.51) do not hold for any j* # j. Suppose not and assume (2.50-2.51)
holds for some j* € {1,...N;} — {j}. It follows from Lemma 2.7.6 that 3(a’,b") # (a,b) such that

a = 8,Ty/T,Ry, = Sy Ty /T, Ry, which violates Assumption 1. ]

2.7.7 Zero valued dual variables

In Appendices 2.7.2-2.7.6, we have established that ®(a, €;) determines the solution of LP (2.5)
for any r, €, provided the dual variable @ > 0. Here, « is also the pico rate-multiplier.
In this Appendix, we will show that there exist positive rate multipliers (such that (2.43-2.46) hold)

when the corresponding dual-variables are zero.

2.7.7.1 Existence of pico bias multiplier «,, > 0 when the dual-variable « = 0

When a = 0, y, = 0,Yu € U; from (2.46). This implies 1/R, > v,,Yu € U;. Now using (2.43),
x, = 0,Yu € U,. Therefore, the value of the LP (2.5) is 0. This implies LP (2.53) must have a value

<.
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Note that LP (2.53) is a two-tier LP, which was considered in [44]. The femto allocation z, was
derived by sorting the UEs in each U ; in descending order of 7,,/S,. The femto allocation was then
determined by using up time ¢; by serving the files in the order of 7,,/S,. This is the structure of the

solution of LP (2.53).

mino E Vu/Su
>
Yusluz MEU,'

s.t. Z 2Ty < €,¥j € {l...N;}

uelt
J

Yu+ 2y = Dy,Yu € U; (2.53)

Define @, := min,ey, S,/R,. Note that S,/R, > a, by definition. Therefore, @,,7,,/S, <
T,/R.,Yu € U; which implies p;," = a,,T,/S,,Yu € U;. Notice that when «a,, is given as an input to
O(ay, € ), the UEs u € U; will be sorted according to 7,,/S, in Algorithm 2 for each j € {1,...N;}.
The allocation procedure in this case coincides with the optimal solution in [44]. Hence, ®(a,,, €;)

will produce an optimal allocation with 6(a,,, €) = 0.

2.7.7.2 Existence of femto bias multiplier ﬁ’]?q > 0 when dual variable 3; = 0

Recall that 8; = 0 when Zf:  Du /T, < €. This is a consequence of complementary slackness.
Consider ﬁ;.” := py,- Note that since py, > ,8;.”,V1 < k < K, the rate-bias rules (or the stationary
conditions) (2.43-2.46) are still honored when g; is replaced with B;.". Hence, ﬁ;." is a positive femto

bias multiplier which adheres to the rate-bias rules when dual variable g; = 0.



Chapter 3

Distributed Scheduling Algorithm for

mm Wave IAB networks

3.1 Introduction

mmWave cellular networks are expected to play a key role in the next generation wireless com-
munications (5G) [7]. They are capable of delivering very high rates, due to the vast amount of
spectrum available in the mmWave band. However, wireless communication at mmWave frequencies
comes with two major challenges, including 1) high isotropic propagation loss, and 2) sensitivity to
blockage by the objects in the environment. To overcome the high propagation losses, directional
communication using beam-forming is being considered for mmWave cellular. High beam-forming
gains are achievable by implementing large antenna arrays in a tiny area (which is possible due to the
small wavelengths). The mmWave cell sizes are expected to be small due to the high propagation
loss and blocking, and ultra dense deployments of Next Generation Node Bases (gNBs) are being

considered to provide universal coverage.

It is prohibitively expensive to provide fibre backhaul support to all the gNBS under dense
deployments. Hence, there has been recent interest in multi-hop relaying (or self backhauling) in
mmWave cellular networks as a potential solution. Notably, as part of its standardization efforts,
3GPP has completed a recent study item on the potential solutions for efficient operation of integrated
access and wireless backhaul (IAB) for NR [8]. The study emphasizes the joint consideration of

radio-access and backhaul for mmWave cellular networks.
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In this chapter, we consider a multi-hop IAB network, where a fraction of gNBs are deployed with
dedicated fiber backhaul links, referred to as IAB donors [8]. The other gNBs (referred to as IAB
nodes) relay their backhaul data over wireless mmWave links, possibly in multiple hops to an IAB
donor. According to [8], an IAB node establishes a link to a parent node (either another IAB node
or a donor) by following the same initial access procedure as a UE, and the central unit (CU) at the
IAB donor establishes a forwarding route to the IAB node via the parent. Therefore, traffic of a UE is
forwarded along this established route from the IAB donor to the UE (in downlink). The 3GPP study
identified two topologies for the operation of mmWave IAB, 1) spanning tree (ST) and 2) directed
acyclic graph (DAG) topology [8]. We primarily focus on the ST topology, where each IAB node

has one parent node (either a IAB node or the IAB donor). An example IAB network can be seen in

Figure. 3.1.
IAB node
US.
Uy .
us
]

Figure 3.1: mmWave IAB network. The red links are mmWave backhaul links and the blue links are

mmWave access links.

Dynamic resource allocation (or scheduling) is a key challenge in the control of multi-hop IAB
networks [6, 9]. Joint consideration of access and backhaul in resource allocation for IAB networks is
emphasized in [8]. According to [8], it is critical to consider in-band backhauling (i.e., backhaul and
access use the same frequencies) solutions that accommodate tighter interworking access and backhaul.
In an in-band scenario, the half-duplex constraint imposes restrictions on the links that can be active
simultaneously. In this chapter, we characterize the capacity of 3GPP mmWave IAB networks in an
in-band IAB scenario and multiple RF chains at the gNBs. We also propose a distributed scheduling

algorithm for IAB networks. Our contributions are as follows.
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Some works in the literature have studied joint routing and resource allocation for mmWave multi-
hop networks as utility maximization problems [45-51]. Others considered queue based models
[50, 52-55]. Utility maximization was used for path selection and scheduling in [50, 54, 55], and for
congestion control and scheduling in [52, 53]. The solutions given in these works were centralized
in nature. Moreover, some works only considered single stream downlink beamforming, and do not
consider scheduling with multiple RF chains at a gNB [49, 51-54]. Dynamic path selection algorithms
for topology management in mmWave networks were studied in [56-59], with [56] considering
distributed schemes. Very few works have focused on distributed scheduling algorithms for mmWave
networks.

Distributed scheduling for wireless networks in various setups have been studied in the literature
[10-16]. Much of the work is focused on networks under a primary interference constraint [12, 13,
15, 16]. Under the primary interference constraint, any two links sharing a common node (either a
transmitter or a receiver) are not allowed to be scheduled simultaneously. The other works considered
more general conflict constraints [10, 11, 14]. Under the conflict constraint, a given link cannot
be scheduled with any of the links in a predetermined set. In [12, 13], maximal scheduling based
distributed algorithms were proposed, which were shown to achieve only a fraction of capacity in
general. In [14], a distributed version of greedy maximal scheduling was proposed for a wireless
network with time varying link rates. In [10, 11], Carrier Sense Multiple Access (CSMA) based
distributed scheduling algorithms were proposed and shown to achieve full capacity. Pick-and-
Compare (PaC) based distributed algorithms were proposed in [15, 16].

The results of the above mentioned papers cannot be directly applied to the mmWave IAB networks
for the following reasons. 1) With the exception of [14], they did not consider time varying link rates,
which is a key concern in mmWave networks due to blocking. 2) The RF chains impose a different
type of constraint than the conflict constraint, e.g., Consider a gNB with 2 RF chains and serving 3
downlinks {¢,¢>,€3}. Even though no two links in {£,¢>,¢3} conflict with each other, they cannot
be scheduled simultaneously due to the limit on the RF chains. Only the links in the following
sets {€1, 02}, {€1,¢€3},{€2, €3} can be scheduled simultaneously, which cannot be modelled by a conflict
constraint. Hence, there is a need for designing new distributed algorithms for mmWave IAB networks.

In this chapter, we provide a distributed and local scheduling algorithm for mmWave IAB networks.

* We propose a distributed and local version of the max-weight algorithm for mmWave 1AB

networks. The schedule at a gNB only depends on the local queue information, current link
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rates and a one bit message from the parent node.

* We will show that the algorithm achieves 100% of the capacity region of the class of local
policies which make decisions based on local information and information passed from the

parent node, under some assumptions on the arrival and link rate processes.

* Using numerical simulations, we show that the performance (expected queue length) of the
proposed algorithm is very close to that of centralized algorithms (using global information),

such as the global max-weight and back-pressure in realistic scenarios.

3.2 System Model

3.2.1 SDMA Downlink Model

We consider M,, RF chains at a gNB n. The gNB n can beamform to M,, downstream nodes
simultaneously. A downstream node can be a UE or a IAB node receiving backhaul. Consider a gNB
n beamforming to downstream nodes {ki},t['i- We consider a slotted model with slots t € Z,. The
signal received by k; in slot ¢ is given as

My

¥ilt) = wiHiOwix(0) + D wHi(e)wx;(0) + 7i(1)
j=Lj#i

where x;(t), x;(¢) are the transmit symbols corresponding to nodes k; and k; resp. z;(¢) is the noise
at receiver k;. H;(t) is the channel matrix from n to k;, which is assumed to be fixed for the slot
duration. H;(t) € cNi XN'I', where N! (and N!) is the number of antenna array elements at node k;

IXN;) is the receiver beam-forming vector at k; (and k; resp.).

(and n resp.). u; € C™*N (and u; € C
w; € CNi¥! (and w; € CM¥*1) is transmit beam-forming vector corresponding to k; (and k; resp.).

The SINR of the received signal at k; is given by

SINR 4, (1) =

.H. .12
_ |lu; H;(t)w;| (3.1)

Zj:nl’j# |uiHi(l)Wj|2 + 02

where o2 := E[z?(1)] is the noise power. The rate (in packets/slot) of the link between n and k; in slot

t is given by

BT,
M (1) = PS log,(1 + SINR,4,(1)) (3.2)
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where B is the transmission bandwidth (in Hz), T is the slot length (in sec) and P is the packet size

(in bits).

3.2.2 Link scheduling constraints

We use a binary variable s;(z) € {0, 1} to indicate the scheduled state of a link €. s,(t) = 1 indicates
¢ is scheduled in slot 7, and s¢(¢) = 0 indicates otherwise. There are two types of constraints on link

scheduling - (3.3) due to the limit on number of RF chains at gNB #n, and (3.4) due to the half-duplex

constraint.
Z se(t) < M, (3.3)
tel,
Sp, (1) X s¢(t) = 0,V € L, (3.4)

where £, is the set of downstream links of a gNB n € N, and b,, is a backhaul link from an upstream

gNB to n.

3.2.3 Network and Queueing Model

We consider the spanning tree topology, and represent the IAB network as the rooted tree graph
G =(UUUN,L,r) where N is the set of all the gNBs, U is the set of all the UEs and £ denote the
set of all the wireless links, i.e., the backhaul links and the access links. Here, IAB donor is the root
node r. For an IAB node n € N — {r}, let p(n) denote the upstream node of n in the path from n to
r. We refer to p(n) as the parent of node n. An IAB node n € N — {r} gets backhaul data from node

p(n) via the backhaul link b,, connecting n and p(n).

Assumption 2. We abstract out the key features of a mmWave IAB network via the following modelling

assumptions
o We assume that the graph G is a rooted tree, which models the spanning tree topology.

e A feasible schedule must satisfy (3.3) and (3.4), which models the half-duplex and RF chains

constraints.

o For ammWave access link € between a gNB and a UE, we assume that u(t) is a random variable

taking values from {0,1,. .., umax }- The effects of fading are modelled using the time-varying



64 Distributed Scheduling Algorithm for mmWave IAB networks

link rates. Here, up(t) = 0 corresponds to the small-scale outages! (due to tracking errors,

beam mis-alignment etc.,).

e For a gNB-gNB backhaul link b, we assume that up(t) is a random variable taking values from
{0, fip}. The backhaul links are highly directional LOS wireless links between two static gNBs.

Therefore, the effect of fading is neglected. Small-scale outages are modelled using the 0 state.

us U4 Us Ug

Figure 3.2: Graph representation of IAB network in Figure. 3.1.

The queuing model is as follows. Each source-destination pair r — u is associated with a flow f,
with root r as the source and the UE u € U as the destination. The packets of flow f has to be routed
from r to u via the path connecting r and u (see Figure. 3.2). Let # denote the set of all the flows
in the network. A gNB n maintains a queue q;{ corresponding to each flow f that passes through
n. Let q,{ (t) denote the number of packets in the queue of flow f at the node n in slot ¢. Note that

q,{ (t) = 0,Vt € Z, if the path of flow f does not include n.

The packet arrivals of each flow f € F occur as a exogenous process at the root r. Let af-(t) €Zy
denote the number of packets of flow f arriving during slot ¢ at node r, and let d,{ (t) denote the
number of departures in slot ¢ from flow f’s queue at gNB n. For an IAB node n € N — {r}, packets

arrive on the backhaul link from node p(n) (see Figure. 3.2). Hence, arrivals into the queue q,{ are the

'Note that this does not include blocking. The link outages caused due to blocking can last in the order of seconds,
and a change in topology is necessary to address it. Once the new topology is established, the algorithm proposed in the

chapter can be applied to stabilize the queues.
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departures from q[{ (n)" The queue evolution equations can be written as follows

gl (t+ 1) = gl (t) + al (1) - df (t)

gn(t +1) = g1 (t) + d}y () = (), Yn € N = {r}
In the following, we present a table of important notation.

Table 3.1: Table of Notation.

Notation Description

r The root node in G and the IAB donor.
p(n) The parent node of a gNB n e N — {r}.

by The backhaul link connecting gNB n € N — {r} to gNB p(n)

L, The set of downlinks of gNB n € N.

L The set of all the links in G, L := U,,en La-
wi(t) The link state (i.e., rate of the link in packets/slot) during slot ¢.
s5i(1) The scheduled state of link /. s;(f) = 1 if link [ is scheduled in slot 7, and 0 otherwise.
q,{ (1) The number of packets corresponding to flow f queued at gNB 7 in slot ¢

In the next section, we present the assumptions on the arrival and link rate processes, which are
very general in nature and applicable to a wide range of examples. We define the stability criterion

and characterize the stability region.

3.3 Stability

Following other works [17, 60, 61], we characterize stability under the following assumptions on

the packet arrival and link rate processes.

Assumption 3. . The exogenous packet arrivals {arf (1)}2, of each flow f € F is a stationary

process, with a mean v/ := E[af(l)].

2. Given any € > 0, there exists a positive integer M’ such that VM > M’

k+M-1

e > al)

=k

E

]<e,er?,keZ+
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3. Finally, the arrival process satisfies limy_, o AZP[arf (1) > Al =0,VfeF
Let u(t) := [w(t)]1er and let M denote the set of all possible link state vectors u, i.e., u(t) € M,Vr.

Assumption 4.  [. The link state process { ()}, has a stationary distribution, where the station-

ary probability of being in a state u € M is denoted by 7, > 0.

2. Given any € > 0, there exists a positive integer M such that VM > M’

k+M-1

M= > M) = )

t=k

E <eVle LkeZ,

where 1(.) is the indicator function.

3. There exists a positive integer [max such that uy(t) < pmax, V1 € Lt € Z4

3.3.1 Scheduling Policy

We consider stationary scheduling policies which make decisions based on the current state
[Q(?), u(¢)]. In each slot ¢, a scheduling policy chooses s(¢) := [s¢(t)]¢cc, only based on the current
link rates u(¢) and the queue lengths Q(r) = [q,{ ()] fnjeFxn- subject to the constraints (3.3) and
(3.4). Let S denote the set of all the feasible schedules s such that constraints (3.3) and (3.4) hold.
A deterministic scheduling policy provides a mapping from the [gq, u] € ZL:FMN X M to a schedule
s eS.

€ Z'f'xw % M, a randomized scheduling policy is the output of a random

Given a state [g, u]
variable Y, with the probability distribution #;, on S. The probability distribution #,, only
depends on the state {q, u}. Ateach time 7, the schedule s(¢) is chosen independently according to the

distribution Py 1) ()

Definition 3.3.1. We consider the system to be stable under a scheduling policy if and only if

lim sup,_,., 2126 E[Q(7)]/t < oo.

Definition 3.3.2. We consider the system to be stabilizable if and only if there exists a scheduling

policy under which the system is stable.
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3.3.2 Stability region

We introduce the necessary terminology before characterizing the stability region. Let v :=
[v/] reF denote the arrival rate vector. For £ € L, Let ¥, C ¥ denote the set of flows whose path
includes ¢, and v := X e, v/ denotes the average arrival rate of packets into link £.

For a given u € M,s € S, we denote the corresponding rate vector as ¢g := u © s, where © is
element-wise product. For a given link state u, let C, := {¢s}ses denote the set of the rate vectors
corresponding to the feasible schedules.

The stability region is given by the set A as stated in Lemma 3.3.1 and Lemma 3.3.2

A =3y = [ ljer : [velrer € Z 71,Conv(Cy) (3.5)
HEM

where Conv(-) is the convex hull of the given set.
Lemma 3.3.1. The system is not stabilizable if v ¢ A.
Proof. See proof of Lemma 3.3.1 in section 3.7. [

A point v is in interior of A if and only if there exists a 6 > 0 such that v + 61 € A, where

1= [l]fe‘}"

Lemma 3.3.2. Given a v in interior of A, there exists a stationary randomized policy which makes

scheduling decisions based on the current link state u(t), which will stabilize the system.

Proof. See proof of Lemma 3.3.2 in section 3.7. [

3.4 Local policies and their stability region

In this section, we consider a class of local scheduling policies where the scheduling decisions are
made locally at the gNBs. We characterize the stability region of this class of policies, and propose a
local algorithm which achieves stability for any arrival rate vector within capacity region for this class.

We make the following stronger assumptions on arrival and link processes for the analysis of
the local policies. Note that under these assumptions, the state process [Q(?), u(t)]icz, is a time

homogeneous Markov chain under any stationary policy.
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Assumption 5. 1. For each f € F, the arrival process {af (D)}72, is an i.i.d sequence of random

variables, satisfying E[(af (1))*] < oo. Further, the arrival processes are independent across

feF.

2. Let pn(t) := [pe()]ees,. Foreachn € N, {u,(t)}72, is an i.i.d sequence of random variables.

Further, the link processes pu,(t) are independent across n € N.

Consider the class # of local stationary scheduling policies which make scheduling decisions as
follows. The decision process starts at the root, the root » makes a decision s,(t) := [s;(t)];cr, based
on the local information u,(t), Q,(t) := [q',f ()] fer. For every other node n, the decision is made as

follows

1. If s55,(¢) = 1 (i.e., parent node p(n) has decided to schedule backhaul link b,), then the links in

L, are not scheduled i.e., s,(f) = 0

2. If s, (t) = 0 (i.e., parent node p(n) has decided to not schedule backhaul link b,), then s,() :=

[s:(1)]ie s, is chosen such that 3¢ o si(f) < M, based on the local information p,(2), Q,(t) :=
(4 (D] per-
It can be noted that the scheduling policies in # do not violate the half-duplex and RF chains constraints.

Also, it can be noted that the policies in P satisfy the following property in common. (3.6) holds

for policies in P.

Elsp, (Olpn(0)] = Elsp, (1)],Vn € N = {r} (3.6)

where p,,(t) := [1(¢)]ier,- Since sp, (¢) € {0, 1}, (3.6) is equivalent to the statement that the scheduling
decision of backhaul link b, is made independently of the link states of the downstream links of gNB
n.

The property (3.6) (along with Assumption 5) leads to a decomposition of stability region of # into
individual local stability regions corresponding to each gNB. The characterization of local stability

regions will be given in the following section.

3.4.1 Stability region of £ and its decomposition

In this section, we will show that the stability region of class # can be decomposed into individual
local stability regions corresponding to each gNB. The system is stable when the arrival rate vector is

interior to each local stability region. We introduce the necessary notation for the formulation.
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Consider the sub-network G, formed using node » and its set of downstream links £,,. We say that
a local schedule s, := [s7]/er, € {0, 1}|£"| of sub-network G, is feasible if and only if >;c » 51 < My,
i.e., number of activated links is less than the number of RF chains at gNB n. Let S, denote the set of
all the feasible local schedules s,. For a given link state u,, € M,, C {0,..., ymax}w"', we denote the
rate vector corresponding to feasible schedule as ¢, := u, ©s,, where © is element-wise product. For
a given link state p,,, Cy, := {¢s,}s,es, is set of rate vectors corresponding to the feasible schedules.

We define the local stability region A, as

[W]leLn

A=y =D per 1= v,/ fip

€ > mu,Conv(Cyu,) (3.7)
ﬂneMn

where f1;, is defined in Assumption 2. Recall that b, is the backhaul link connecting » and its parent.
Since the root node r has wired backhaul (and hence no parent), treat v, /15, as zero for A, in (3.7).

We define Ap as follows.
Ap =\ A (3.8)

The stability region of the scheduling policies in class ¥ is characterized by Ap as stated in Theo-

rem 3.4.1.
Theorem 3.4.1. Suppose Assumption 5 holds, then
1. If v & Ap, then the system is unstable under any policy in P.
2. If v + 6[1]reF € Ap for some 6 > O, then system is stable under some policy in P.

Proof. For 1, the proof follows from Lemma 3.7.1 in section 3.7.

For 2, the proof follows from Lemma 3.7.2 in section section 3.7. ]

Naturally, we have the following corollary, which states that the stability region of the local class
must be superseded by the stability region of all stationary policies. In the following section, we will

show that the two stability regions are the same, when the link state u(¢) is constant for all 7.

Corollary 1. Ap C A
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Proof. The class # of local policies is a subset of all the stationary scheduling policies. Hence,
stability region of #, must be included in the stability region of the class of all stationary policies.

It follows that Theorem 3.4.1 that Ay is the stability region for the class #, and it follows from
Lemma 3.3.1 and Lemma 3.3.2 that A is the stability region for the class of stationary policies. Hence,

we have the result. ]

3.4.2 Optimality of class # given fixed link states

In this section, we show that Ap = A, provided the link state is not varying, i.e., u(t) = u?,vVt € Z,.
An intuitive explanation for this result is the following observation. The stability characterization of
Ap results from property (3.6), (which is satisfied by all the policies in £, under Assumption 5). If
the link state is un-varying, then (3.6) holds for every stationary policy (and not just policies in class
P).

We prove the result more formally in the following Theorem 3.4.2.

Theorem 3.4.2. Suppose that u(t) = p,vVt € Z,, where ,u;i > 0,Vl € L. Then,

Ap = A (3.9

Proof. 1t follows from Corollary 3.4.1 that A 2 Ap. Here, we will show that A C Ap, which
completes the proof.
Consider a v € A. Since it is given that u(r) = u<,Vt, it follows from the definition of A that

[vilier € Conv(C,a). Hence,

ilier € Conv([p? © slses) (3.10)

where S is the set of all feasible schedules and © is the element-wise product. Therefore,

A[pslses = 0 such that [v;]jep = ZseSpsﬂd Osand Y csps = 1.

Consider some n € N. The set of feasible states S can be divided into two disjoint sets A; and A,

as follows

A :={seS:s, =0} (3.11)
Ay={seS:sp, =1} (3.12)
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Note that ) ;s Ps ,u;f Sp, = Vb, It follows that X ;c 4, ps ,uz = vp,. Therefore,

> pe=vu,/uf, (3.13)
SEA,
> ps=1-vo/pl (3.14)
SEA]
Consider the links [ € £,,, we have
ilieg, = Zps [Tz, © [silie, (3.15)
seS

Let a,(s) be the local feasible schedule [s;];c,, corresponding to the feasible schedule s. We
define for each local schedule s,, € S,,,
ph= >, b (3.16)
SEAan(s)=s,

Note that @, (s) = [0];cr,.Vs € Aa. Therefore, it follows from (3.15) and (3.16) that

bilies, = D Piluflics, @ s, (3.17)

SnESH
From construction, > cs, Ps, = Xisea, Ps- Therefore, 35 cs ps = 1 -,/ ,LLZ (from (3.14)).

Diving (3.17) on both sides by (1 — v, / /JZ ), we have

vilier P d
o N [ifes, O (3.18)
(1= v,/ ) snezsn(l—w,,/uin) e

Since, X es Dsn = 1, it follows that

n (= /)

[VI]ZGLII

m S COI’LV(ﬂf,f © Sn) (3.19)
e

where u? = [,u;l’]le £,- Hence, v € A,,. Since the choice of n was arbitrary, it follows that v € Ap.

Hence, Ap 2 A. O]

3.5 Distributed and Local Max-weight Scheduling Algorithm

We present a distributed and local version of the max-weight scheduling algorithm which stabilizes

the system. Recall that £, is the set of downstream links of n, and b,, is the backhaul link connecting n
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and its parent node p(n). For a link [ € £, define ¢! (¢) := 3, feF q,]: (t) as the total number of packets
queued at n to be sent over link /.

Consider the set of links L) () ¢ £, defined as follows; the set £, (¢) contains a link £ € £, iff
either 1) € is an access (gNB-UE) link such that qf;(t) > 0 or 2) ¢ is a backhaul (gNB-gNB) link such

that g£(t) > pe(¢) > 0. We propose the local scheduling rule as the following optimization

max > si(6)ui(1)qh(t)

lel,

s.t. Z si(t) < M,

le L} (1)
si(t) € {0, 1}, Yl € L (1)
si(t) =0Vl € L, — L1(1) (3.20)

i.e., schedule the links with largest weights wy(f) := p;(¢)g.(¢) from the set £/(t) subject to the limit

on RF chains.

3.5.1 Distributed Scheduling Policy

For the sake of convenience, let s,(¢) := [s;(f)];cr,. In each slot ¢, the root r starts the decision
process by choosing s,(f) according to the local scheduling rule (3.20). Other nodes n € N — {r}

choose s,(¢) depending on the value of s, (¢) as follows

1. If the backhaul link into n, (i.e., b,) is scheduled in slot 7 and s, (t) = 1, then gNB n does not

transmit and s,,(¢) = 0.
2. Otherwise, s,(t) is chosen according to the local scheduling rule (3.20).

It can be noted that the scheduling decision at n € N — {r} depends only on the local information
Ha(1), ¢'(¢) and the one bit information s, (¢) (which is a part of s p(n)(t)) from the parent p(n). Hence,
it can be implemented in a distributed manner by down-stream passing on the tree G. It is clear that
the algorithm is feasible, since it does not violate constraints (3.3)-(3.4).

We illustrate the difference between the traditional max-weight algorithm and the proposed al-
gorithm with the example in Figure. 3.3. Consider the network and link weights g’ (f)u;(t) given
in Figure. 3.3(a). Suppose each gNB node has 2 RF chains, i.e., M, = 2,Vn € N and that
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nqy

Ny ns Ny ns
1 \2 3 2 3 1 2 3
ur ur
us Uyg us Ug us Uyg us Ug
(a) Example network with weighted (b) Links scheduled under the tradi- (¢) Links scheduled under the
links tional max-weight algorithm proposed local max-weight algo-
rithm

Figure 3.3: Numerical example.

gt(t) = w(t),Vl € Ly,n € N. The links shown in Figure. 3.6(a) are scheduled under the tra-
ditional max-weight algorithm, with a total weight of 17. The links shown in Figure. 3.7(a) are
scheduled under the proposed local max-weight algorithm, with a total weight of 14.

The following theorem characterizes the stabilizing properties of the local max-weight algorithm

under Assumption 5

Theorem 3.5.1. Given Assumption 5 holds, the system is stable under the proposed local max-weight

algorithm for any v in the interior of A(P).

Proof. See proof of Theorem 3.5.1 in section 3.7. U

3.6 Numerical Results

We consider the gNB setup shown in Figure. 3.4. Here, gNB 1 is the IAB donor, and the other
gNBs 2 -5 are IAB nodes with the IAB topology shown in Figure. 3.4. The parameters for simulation
are chosen as follows. For the gNB-gNB backhaul links, the distance is uniformly chosen between
340 and 440m. For the access gNB-UE links, the gNB-UE distance is chosen uniformly randomly
between 0 and 200m. Following [62], we consider Rician fading for access links with K factor as
13 dB for LOS links and 6 dB for NLOS links. The fading realizations are generated independently
in each slot. Following [63], we model outage of each link as an alternating renewal process. For

access links, the outage periods are geometrically distributed with mean 5.56 slots, and the non-outage
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gNB 1

gNB 2

A

gNB 4

NB 3

Figure 3.4: TAB Network Topology.

periods are geometrically distributed with mean 50 slots. Therefore, the stationary probability of an
access link being in outage is 0.1. For backhaul links, the outage periods are are geometrically
distributed with mean 1.01 slots, and the non-outage periods are geometrically distributed with mean
100 slots.Therefore, the stationary probability of a backhaul link being in outage is 0.01. We take the
interference term in (3.1) to be zero.

The number of UEs associated at each gNB is chosen uniformly randomly between 4 and 11. For
the arrival process, the number of packet arrivals in each slot, corresponding to each UE (or flow) is a
i.i.d Poisson random variable. The mean is chosen to be the same for each UE. Other parameters are

given in the following Table 3.2.

3.6.1 Comparison of scheduling policies
For comparison, we consider the following five scheduling policies.

1. Proposed: We consider the local algorithm proposed in the chapter.

2. Maxweight: We consider the traditional max weight algorithm which requires global informa-
tion. The max weight algorithm maximizes the objective }c , s1()pi(t)gL(t) subject to the

half-duplex and RF chains constraints (3.3-3.4).

3. Backpressure: We consider the back pressure algorithm which also requires global information.

The back pressure algorithm maximizes the objective }};c , sl(t)wlbp (t), where the back-pressure
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Table 3.2: Simulation Parameters.

Paramter Value
Carrier frequency 23 GHz
Bandwidth 1 GHz
Propagation model 3GPP Urban Micro
Slot duration 125 us
Packet size 100 Kb
RF chains 4
Noise spectral density -174 dBm/Hz
gNB transmit power 30 dBm
Beamforming gain 30 dB (for access), 40 dB (for backhaul)
Noise figure 5 dB (for gNB), 7 dB (for UE)

wlbp (t) := w(t)g.(t) for a UE link [ € £, and for a backhaul link b, from p(n) to n, wgf () =
b, 0) ()0 = Bier, 4h(0)).

. PropFair: This is another algorithm from class . We consider a setup where proportional
fairness algorithm is run locally at the gNBs following the hierarchy of IAB network. The
proportional fairness algorithm is implemented at root r as follows. In each slot ¢, the root r
schedules the 4 links in £,(since there are 4 RF chains at a gNB) with the highest ratios of
instantaneous rate to average rate. The other gNBs n provide priority to the backhaul link b,,.
If b, is not scheduled in a slot ¢, then gNB n chooses 4 links in £, with the highest ratios of

instantaneous rate to average rate.

. LocalMaxweight: This is another algorithm from class . We consider a setup where the max
weight algorithm is run locally at the gNBs following the hierarchy of IAB network. Here, the
max weight algorithm implemented at a gNB n maximizes ¢, wi(t)gl(t)s;(¢) provided the
backhaul link b, is not scheduled. There is a crucial difference between the proposed algorithm
and this scheme. Here, all the links in £,, are considered for scheduling at a node n, whereas
in the proposed scheme scheduling of the backhaul links in £, with ¢’ (1) < w(¢) (i.e., small

queue sizes) were avoided in favour of scheduling links at the downstream gNBs.
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There are three types of UEs in the network in Figure. 3.4. 1) The UEs of gNB 1 are served by
the root gNB 1. Hence packets of these UEs are not relayed over backhaul links. Here, the end-to-end
delay for a UE is same as the scheduling delay (at gNB 1). 2) The UEs of gNB 2 and gNB 3. The
packets of these UEs have to be relayed over 1 backhaul link. Here, the end-to-end delay is the sum
of scheduling delay at gNB and backhaul delay (over 1 link). 3) The UEs of gNB 4 and gNB 5. The
packets of these UEs have to be relayed over 2 backhaul links. Here, the end-to-end delay is the sum
of scheduling delay at gNB and 2 backhaul delays (i.e., 2 hop). We present the average end-to-end
delays of UEs of various gNBs w.r.t arrival rate in Figure. 3.5-Figure. 3.7.

Arrival rate (in packets/slot) is the expected rate of packet requests corresponding to each UE (or
flow). The packet size (in Kb) and slot length (in us) are presented in Table 3.2. In what follows,

arrival rate is the expected rate of traffic (in Mb/s) corresponding to each UE.
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Figure 3.5: Average end-to-end delays of UEs at gNB 1.

The results for UEs at the root node gNB 1 are presented in Figure. 3.5. It can be observed that the
average delays are much smaller (compared to the delays of UEs at other gNBs, given in Figure. 3.6
and Figure. 3.7) for all the considered algorithms. The PropFair algorithm has the best performance
of all the schemes, with the difference being more significant at higher arrival rates. However, the
following results will show that the PropFair algorithm has a smaller stability region compared to the
other schemes.

The results for the UEs of gNBs 2&3 are presented in Figure. 3.6. The local max-weight algorithm
is unstable for the considered arrival rates, and the end-to-end delays are unbounded. Hence, it is not
plotted. It can be observed that the PropFair algorithm does not stabilize the network for arrival rates

higher than 310 Mb/s. It can also be noted that the proposed algorithm has a comparable performance
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Figure 3.6: Average end-to-end delays of UEs at gNBs 2&3.

to the global schemes, i.e., Maxweight and Backpressure. The asymptotic behaviour of the schemes

is shown in Figure. 3.6(b). The dashed line is an upper-bound on the stability region. Here, it can

be noted that the proposed algorithm has bounded delays for arrival rates beyond the stability region.

However for the UEs of gNBs 4&S5 (given in Figure. 3.7), the delays start blowing up at lower rates

than the global schemes. The system is unstable under the proposed algorithm at arrival rates beyond

442 Mb/s (see Figure. 3.7), even though the delays are bounded for UEs at gNBs 1, 2&3. A possible

explanation for this is the hierarchical nature of the proposed algorithm; the scheduling at an upstream

node is given priority over the downstream nodes.
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Figure 3.7: Average end-to-end delays of UEs at gNBs 4&S5.
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The results for the third tier UEs, i.e., UEs of gNBs 4&5 are presented in Figure. 3.7. The local
max-weight algorithm is unstable for the considered arrival rates, and hence not plotted. It can be
observed that the delays under the PropFair algorithm blow up at approximately 300 Mb/s. It can be
noted again that the proposed algorithm has a comparable performance to the global schemes, i.e.,
max-weight algorithm and the back-pressure algorithm. The asymptotic behaviour of the schemes is
shown in Figure. 3.6(b). The dashed line is an upper-bound on the stability region. Here, it can be
noted that the delays (under the proposed algorithm) start blowing up at lower rates than the Maxweight
and Backpressure. This is the gap between the capacity achieved by the proposed algorithm and the
global schemes (Maxweight and Backpressure).

For the considered simulation, the gap in capacity (between the global schemes and the proposed
algorithm) is small. Lemma 3.4.2 provides an explanation. The variation (over time) in the mmWave
link states is small in the considered IAB scenario. Hence, the proposed scheduling algorithm can
be applied for in such scenarios (i.e., where the link variations are small) without a significant loss in

capacity.
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Figure 3.8: Average end-to-end delays.

Figure. 3.8 presents the average delays of UEs at arrival rates 214 Mb/s (in Figure 3.8(a)) and 428
Mb/s (in Figure. 3.8(b)). As mentioned earlier, the end-to-end delays to UEs at gNBs 2 — 5 are the
sum of scheduling delay and backhaul delay. For the UEs of gNBs i = 2,3, the green bar represents
the backhaul delay on the link connecting gNB 1 and gNB i. For the UEs of gNBs 4&35, the packets
have to routed along two backhaul links. The green bar represents the delay on the first hop, and the

pink bar represents the delay on the second hop.
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It can observed that at low arrival rate 214 Mb/s, the proposed algorithm has much higher backhaul
delays (compared to the other schemes). This is because the backhaul links b are only considered for
scheduling when the criterion g;(¢) > up(t) holds. Hence under the proposed algorithm, the packets
are queued until the backhaul link capacity is reached before transmission is attempted (even though a
scheduling resource, i.e., RF chain, might be available earlier). This leads to idling under the proposed
algorithm at low arrival rates. At higher arrival rates such as 428 Mb/s, it can be observed that this
phenomenon does not have a significant impact on end-to-end delay, since the queues build up quicker
at higher arrival rates.

We now present the cumulative distribution of end-to-end delays under various schemes at arrival

rates 214 and 428 Mb/s.

Proposed
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(a) End-to-end delays for UEs of gNB 1 for (b) End-to-end delays for UEs of gNB 1 for
arrival rate of 214 Mb/s. arrival rate of 428 Mb/s.

Figure 3.9: Cumulative distribution of end-to-end delays of UEs of gNB 1.

Figure. 3.9 presents the distribution of end-to-end delays for UEs of gNB 1. Here, it can be
observed that the results of the proposed algorithm are very close the other schemes.

Figure. 3.10 presents the distribution for UEs of gNBs 2 and 3. The results of the proposed
algorithm are comparable to the other schemes at arrival rate 214 Mb/s. At 428 Mb/s, the proposed
algorithm has a better performance (we think due to the hierarchical preference given to UEs of gNBs
2 & 3 over the downstream UEs).

Figure. 3.11 presents the distribution for UEs of gNBs 4 and 5. The results of the proposed

algorithm are worse compared to the other schemes at arrival rate 214 Mb/s (due to the earlier
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Figure 3.10: Cumulative distribution of end-to-end delays of UEs of gNBs 2 & 3.
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Figure 3.11: Cumulative distribution of end-to-end delays of UEs of gNB 4 & 5.

explained phenomenon of idling at low arrival rates). At 428 Mb/s, the proposed algorithm has a

performance which lies between the Maxweight and the Backpressure algorithms.

3.7 Theoretical results

3.7.1 Telescoping equations

Consider P, as the set of nodes in the path from 7 to r including n and r. We now derive telescoping

equations of the aggregate queues flowing along this path, which will be used in the proofs. We first
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introduce necessary terminology. Let

Al(t) = Z al(t),vte £ (3.21)

fere
Di() = Z dONte LineN (3.22)

fere

Also define,

0Lty := ) giVte LineN (3.23)

fere
Vit):= Y QL().VE € LneN (3.24)

n’epP,

Consider a link ¢ € £L,. For any n’ € P, — {r}, we have
Oy (t+1) = QL (1) + D, (1) = DL, (1) (3.25)
For node r, we have
Q(t + 1) = Q5(1) + AL(1) - D(r) (3.26)
(3.26) and (3.25) for n’ € P, — {r} form a telescoping series of equations. Summing them yields
Vit + 1) = Vi(r) + AL(t) - DL(1) (3.27)

where V;(t) := X,ep, Qf;,(t) for any node n € N and € € L.

3.7.2 Results for section 3.3

Proof of Lemma 3.3.1. From (3.27), for any ¢ € L, we have

Ve(t + 1) > Ve(7) + AL(T) = pe(t)se(T) (3.28)

= Vr+1)=>2V(r)+a(r)— u(r) ©s(r) (3.29)

where V(1) := [V(7)]¢es and a(7) := [AY(T)]res.
From Assumption 3 and Assumption 4, there exists M such that V¢ > M, we have E[ IT;IO a(t)] >
t[vi — €lier and E[Zt;zlou(T) O s(1)] < tec + tel for some ¢ € 3 ,epm 7uConv(Cy). Let C :=

Zuem TuConv(Cy).
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Consider at > M, summing (3.29) from 7 = 0 to  — 1 and taking expectation, we have

t—1 t—1
E[V(1)] > E[V(0)] + E[ ) a(t)] ~E[ ) u(r) © s(7)] (3.30)
7=0 7=0
E[V(t)] -E[V(0)] >t (v —¢c) — 2tel (3.31)

Sincev ¢ A and ¢ € C, there exists € € L suchthatv,—c; > 6 > 0, where 6 = inf, cc max;cz v;—
c,. Since the choice of € is arbitrary, fix € := 6/4. It follows that E[V,(7)] — E[V,(0)] > 16 /2. It follows

that
E[IIV(O)|i] = t6/2, YVt > M (3.32)

Therefore, Y. _,, E[IIV(D)|i] = 6/2((t = M + 1)M + (t - M)(t — M + 1)/2). This implies

t—0o0

lim sup " E[[[V(7)]]/r = o0
=0

under any scheduling policy. Hence, the system cannot be stabilized. [

Proof of Lemma 3.3.2. By definition, 35 > 0 such that v’ := v + 61 € A. From (3.5), there must exist
{eutyemsuchthat [v)]eer = 2 e p mucy and ¢y € Conv(Cy). For any given u, since ¢, € Conv(Cy),
there exists {pus}ses suchthat ¢, = Y ccs pus( O s)and Yocs pus = 1.

Now consider the stationary randomized policy which schedules a set s € S w.p. p, ¢ provided
the current link state is u, i.e., P[s(t) = s|u(t) = p] = pus. From construction, it follows that
E[ue(t)se(t)] = v, = ve +0,¥t € L.

Consider € := ¢/4, it follows from Assumption 3 and Assumption 4 that there exists M such that

foranyr > 0and ¢ € L

T+M-1
E[ Z ALD] < M(ve + €) (3.33)
T+A4—Jt:T
Bl ), we®sed)] > M(v; ~ ) (3.34)

We now analyze the M-step drift under the randomized policy. Consider a link ¢ € £, and the

summation of (3.26) from¢ =7ttot =7+ M — 1, we have

T+M-1 T+M-1
Olw+M-1)=0ln)+ > Aley- > DL (3.35)
t=t 1=t

=17 t=T7

T+M-1 T+M-1
Q/(r+ M ~1) < max {o,Qfm— 2. m(t)sf<r>}+ 2, A (3.36)
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Define A/(7) := XML AL(r) and De(7) := S7M71 1 (0)s,(1).
It follows that
2 2
(Q4(r + M = D) < (04) = DD + 43D + 241 max(0,0L(T) - Do)} (3.3D)
< (Qf(r) - Dg(‘r))z + A2(1) + 2A0(1)Q%(7) (3.38)
= () + DA + A3(r) + 20Lx)AT) - Ditr) (3.39)
Hence, we have E [(Qf(r +M - 1))2 — (Qf(r))2 |Q(T)]
< E[D;(0)|Q(7)] + E[A7(1)|Q()] + 20L(7)E[A/(7) — Di(7)|Q(1)] (3.40)
= E[D}(7)] + E[A}(7)] + 2Q%(T)E[A¢(7) — D(7)] (3.41)

From point 3 of Assumption 3, we have limy_, kZP[A?(T) > k] = 0. Hence, we have E [A?(T)] < oo,

From point 3 of Assumption 4, we have D/(7) < M puma.x. Hence, for some positive constant Kp,

we have E[A2(7)] + E[D(1)] < K;. Also, E[A¢(7) — D¢(1)] < 2Me + M(v¢ - v,) = =M /2 from

(3.33),(3.34). Hence,

E [(Qf(?’ +M - 1))2 - (Qf(?'))2 1Q(1)| < K¢ — M6QL(r)

Unconditioning (3.42) w.r.t the distribution of Q(7), we get

E“d&+M—Df—@%ﬂz<m—me%ﬂ

Now, summing over 7 from 7 =0to 7T — 1, where T > M, we have

T-1 ) T-1 )
) [(Qf(f +M-1)) ] ->E [(Qf(f))
7=0 7=0

T-1
<TK; - Ms ) E[QX(1)]
7=0

Note that
T-1 ) T-1 5
E [(Qf(r +M-1)) ] > [(Qf(r)) ]

;+(1)\/I—2 5 T-1 0 5

:E]E“dﬁﬂ]— E(dﬁ»]
T=M-1 =0
T+M-2 5 M-2 )

:E]E“dhﬂ]— E“dwﬁ]
MT—zT ) ’ 2/1—2

-ME [(Qf(T +m)) ] -YE [(Qf(m)) ]
m=0 m=0

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)



84 Distributed Scheduling Algorithm for mmWave IAB networks

Hence, the telescoping series in (3.44) yields

M-2 5 M-2 ) T-1
D E|(QhT +m)) ] ->E [(Qf(m)) <TK - M§ Y E[Q((D)]  (3.50)
m=0 m=0 =0
Clgoln) k| MRE| Q)]
- TZ:;) T = < MéT " P - MST 3-51)

Hence, lim sup;_,o, 2120 E[Q4(T)]/T < 0o,¥l € L,.

In the rest of the proof, we use induction to show that lim sup;_, ZZ;& E[Q'(1)]/T < oo,V € L,,
foreachn e N — {r}.

Suppose lim supy_,, ZT ! E[Qf;,(f)] /T < o0o,¥C € Ly,n" € P,, where P, is the set of nodes in the
path from n to r excluding n. Consideralink/ € £,. We will now show thatlim sup;_, ., ZZ;& E[QL(D)]/T <
0,

Consider the drift E [VA(r + M - 1) - VX(7)|Q(7)]

=B [(V(r+ M = 1) = V(0)1Q(0)] + V(@B [(Vi(r + M — 1) = V(1)) |Q(7)] (3.52)
< Ki+2 (W) = 04(0) BV + M = 1) = Vi(D)IQ(O] + 20,(D)B [Vi(r + M ~ 1) = Vi()IQ(7)]
(3.53)

where, K; is a positive constant such that E[3 M~ 1(AL(1))? + S2M1(1(1)s1())*1Q(7)] < K. K;
exists from point 3 of Assumption 3 and Assumption 4, as argued earlier with K, in (3.41).

Since Vi(t + M — 1) = Vi(1r) < Z”M LAl (1), it follows from (3.33) that the second term in
(3.53) can be upper-bounded by 2(V;(r) — Q'.(t))(Mv; + €), which is a linear function of Qpn)(7) =
{q,{,(r)}n,epm rer. Let gi(.) denote the function. Now, we focus on manipulating the third term,
20V (DE[Vi(t + M — 1) = Vi(1)|Q(7)], which equals

T+M-1

20},(TE [A(7) = Di()IQ(T)] +20,(TE | Di(r) = ) DL(1IQ(7) (3.54)

t=1

where A;(t) := Y72M71 AL(r) and Dy(7) := 7M1 1y(1)si(1). Observe that when Q(1) > M pimax.
the second term in (3.54) equals zero (because D/ (t) = p;(¢)s;(¢) for t = 7 to 7 + M — 1). Otherwise,
when Q' (1) < M pimay, it is upper-bounded by 2M? 12, (because D;(1) < pmaxM). Hence, the second

term in (3.54) can be upper-bounded by the constant 2M> /,Lfnax. Therefore,

20L(DE[Vi(T + M = 1) = Vi(D)|Q(7)] < 2M? 1125 + 204(T)E [Al(7) — Dy(7)] (3.55)

<2M* 2, — MSQ! (1) (3.56)
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since E[A;(1) — D;(1)] < =M /2 from (3.33) and (3.34).
Now, using (3.56) and (3.53) yields

E|Vi(r+M-1)-VA@)QT)] < Ki + 2M? 10y + 81(Qpny (7)) — MSQ',(7) (3.57)
Unconditioning w.r.t distribution of Q(7), we get
E[Vir+M—1)=VA1)| < K1 +2M* 1k o + 81(Qpn) (7)) — MSE[Q)(T)] (3.58)

Now, summing from 7 = 0 to 7 — 1 yields (3.59) (from similar arguments as in (3.46)-3.49)

M-2 M=-2
B [VAT +m)] = > B [VAm)] < T(K; +2M% i) + Z 81(Qpn(7)) — M Z 0\() (3.59)
m=0 m=0
S E0(0)] _ Ki+2M Z 8 Qu(1) T E v2<m> .60
= T Mo ~ MoT — © MoT '

We have lim sup;_, ., 8/(Qy(n)(7))/(M6T) < oo from the supposition that lim sup;_, Z:;é E[Qﬁ,(r)] /T
< 00,V € Ly,n' € P,. It follows that lim sup;_,, E[Q!(7)]/T < co.
By principle of mathematical induction, we have lim sup;_, ., E[Q!(7)]/T < oo,VI € L. Hence,

the stationary randomized policy stabilizes the system. 0

3.7.3 Results for section 3.4

Lemma 3.7.1. If [vi]icr, & Ay, then the system is unstable under any policy in P.

Proof. Firstly, note that under Assumption 5, the state process {Q(2), u(2)},2,, is a time homogeneous
Markov chain. By definition, for a stable system lim sup,_, Z’T;lo E[Q(7)]/t exists. It follows that the
Markov chain must be positive recurrent for a stable system. Also note that for a positive recurrent
chain, lim; 0 337~ 0 E[Q(7)]/t exists and equal to the expectation taken over the stationary distribution.

Based on this knowledge, we provide a proof by contradiction. Suppose that the system is stable
under a stationary policy for some [v/]icz, € An. Assume that the Markov chain {Q(#)};° starts
with the stationary distribution, i.e., the initial distribution is same as the stationary distribution of the
Markov chain.

Since the Markov chain is in stationary distribution and the system is assumed to be stable, it

follows that E[up, ()ss,(t)] = vp,. Hence,

Plsp, (1) = 1] = vp, / fin, (3.61)
Plsp, (1) = 0] < 1 —vp,/fip, (3.62)
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Consider the links [ € £,, ¥Vt > 0

E[Vi(r + 1) = Vi(1)] 2 B[AL(1)] — B[y (t)s:(1)] (3.63)
= v; — P[sp, (t) = OIE[1(¢)s:(t)|sp,(t) = 0] (3.64)
> v = (1 = v,/ ftp, E[pu(t)si(2)|sp,(t) = 0] (3.65)

Let consider the term E[z;(2)s;(¢)|sp, (t) = 0]. Since E[sp, (t)|p,(¢)] = E[sp,(¢)] for any policy in

class P, it follows that

E[p(2)s1(2)]sp,(t) = 0] = Z WPy (t) = palsp, () = OIE[si(2)]sp, () = 0, (1) = pn]  (3.66)

HneM,

= > wPlpa(t) = palBLsi(Olsy, (1) = 0, pa(t) = ] (3.67)
HneM,

= > wum PLsi(t) = sy, () = 0, ua(t) = ] (3.68)
HneM,

It follows from (3.68) that

[ELu(O)s1()]55,(6) = 01] ., € > 7, Conv(Cp,) (3.69)
Hn€M,

Suppose l—w,:—,/ub,, < E[u(t)si(t)|sp, (¢) = 0] for each [ € L,, then from (3.69), [v/]ier, € A,, Which
is a contradiction since it is given that [v;];cz, & An.

Hence, there must exist a £ € L, such that v; > (1 — vy, /fip, )E[pe(t)s¢(t)|5p,(t) = 0]. Then,
E[Vi(t + 1) = Vi(¢)] > 0 from (3.65). This is also a contradiction since the Markov chain is assumed

to be in stationary distribution, which completes the proof. U

Lemma 3.7.2. If v + 61 € Ap for some & > 0, then the system is stable under a policy in P.

Proof. Randomized stationary policy § in #

Consider a stationary randomized policy § in  which makes decisions §(7) based on u(t) defined
as follows. The decision process starts at the root, the root r chooses §,(t) = s, € S, W.p. pu, ),

given the current link state u,(t) € M,. For every other node n, the decision is made as follows

1. If §,(¢) = 1 (i.e., parent node p(n) has decided to schedule backhaul link b,), then the links in

L, are not scheduled i.e., §,(t) = 0
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2. If §,,(¢) = O (i.e., parent node p(n) has decided to not schedule backhaul link b,), then gNB n

chooses §,(t) = s, € Sy W.p. Pu,@)s, given the current link state p,(t) € M,.

The values py, 5, for each u, and n € N are chosen according to the following procedure.
Since v + 61 € A(P), it follows that [v;];c s + 61 € A,,,Vn € N. From the definition of A,,,

[ (vi +6)
(I = v,/ fip,)

= Z 7, Conv(Cy,) (3.70)
leLn Hn€EM,,

(V1+6)5
(1-vp,, [ fip,)°

(Vl + 511) < (Vl + 5)
(1 = v, /i, = Opm)) — (1= vy, /f1p,)

It can be observed that for any 6,(,) < there exists a 6, > 0 such that

(3.71)

(minleLn Vl+5)5
(A=vp, [ fiby)

[ (Vl + 5,1)
(1 = v,/ fip, = Spn))

It is immediate that for any 6, < there exists 6, > 0 such that

= Z 7, Conv(Cy,) (3.72)
leLy Hn€EM,

Hence, there must exist {0, }ner, > 0 such that for eachn € N,

[Vl(l)]leL e > 1, Conv(Cu,) (3.73)
" Hn€EM,,

where vl(l) = (vi + 6,)/(1 = vp,/ fdp, = Op(n))- By definition, there must exist {c, },,em, such that

¢y, € Conv(Cy,) and [Vl(l)]ZELn = 2 upeM, T, Cp,- Since ¢y, € Conv(Cy,), it can be expressed as

Cp, = Z Pups,Hn © Sy such that Z Prnsn = 1 (3.74)

SnESH SnESH

We now use proof by induction to show that the randomized policy stabilizes the system.

Negative drift of queues at gNB r under the randomized policy

Consider a link [ € £,, we have

Q11 + 1) = QL) + AL(r) - D(1) (3.75)
= max{0,QL(t) — pu(1)s,(t)} + AL(t) (3.76)

It follows that

2 2 2

(0l + 1) < (20 - usi0) + (4L0)) " + 2400y max{0,04(1) - ()} BT
< (Qi(t) - ,l,a)s,(t))2 + (Aﬁ(r))2 +2AL(10L(r) (3.78)
(0L0)” + 20570) + (AL0)” +2040) (AL - (o)) (3.79)
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Consider the drift E[(Q.(t + 1))* = (0(1))” |Q(#)] under the policy §. It follows from (3.79) that

2 2 2
E[(Qi(m)) - (210 1a0) | < Blki() + (410)) 1420}0) (01 = Bli(05,(0)1Q0D  (3.80)

< oy + E[(AL(0))’]

<K +201(0)| v = Elu(0)§(1)] (3.81)
"> §(t) only depends on u(t)
=K +2000)[vi= Y T s, s (3.82)
Hn€M,,
= K; - 20L(1)5, (3.83)

2 .
where K; := E[17 (1) + (AL(1))"], 6, := minges, X, em, T, Ppy.s, HeSe = Ve

Unconditioning (3.83) w.r.t the distribution of Q(r), we get

E [(Qi(t " 1))2 - (Qi(t))z] < K, - 26,E[0L(1)] (3.84)
Summing over from# =0to 7 — 1, we get

T-1 ) -1 D) T-1
DE [(Qi(t +1) ] DN [(Qi(r)) < TKi - 26, ) EIOL(0)] (3:85)

= t=02 2 ;:_01
E [(Qi(T)) - (0l | < TK - 26, 3 BIQ}®)] (3.86)

1 T-1 i )

— = > EIOL0] < Ki/26, + BI(Q4(0) 1/2Ts, (3.87)

Il
o

t

Hence, lim sup;_, ZtT:_Ol E[QL(1)]/T < oo,VI € L,.

Negative drift of queues at gNB » under the randomized policy

Assume that limsup;_, th_Ol E[Qﬁl,(t)] /T < oo,¥l € L,,Vn' € P,, where P, is the set of

nodes in the path from n to r excluding n. Consider a link / € £,. We will now show that

lim SUPr_s 00 ZZ:()I E[Qit(t)]/T <o
Consider the drift E[Vlz(t +1)- Vlz(t)IQ(t )], which equals

E[(Vi(r + 1) = Vi(1)* |Q()] + 2Vi(DE[Vi(t + 1) - Vi()]Q(1)] (3.88)
<K +2 (Vi) = 04(0) EVi(t + 1) = V(DIQ()] + 20,(EVi(t + 1) = V(DIQW]  (3.89)



3.7 Theoretical results 89

where K; = E[u7 (1) + (Aﬁ(t))z]. Since Vi(t + 1) — Vi(t) < AL(¢), the middle term in (3.89) is upper
bounded by 2v;(Vi(t) — Q(¢)), which is a linear function of Qp,)(t) := {q,{, twep, reg- Let gi(.) denote
this function. Now, we focus on the last term in (3.89), 2Q.,(1)E[Vi(t + 1) — V;(1)|Q(t)], which equals

204(1) (BIALO)] - Els(031(1)]) + 204()BLm(031(r) - D(1)]Q()] (3.90)
= = 26,04(1) + 20, (B[ ()S1(1) - DY(DIQ()] (3.91)

where 6, := minsc g, ZﬂneMn Ty Psn eS¢ = Ve.
Note that E[u;(1)8;(t) — D!(t)|Q(¢)] is zero whenever Q' (1) > umax (since D! (¢) equals p;(£)3(1)).
Otherwise if Q!(f) < tmax. it is upper bounded by g2, (since w;(t)8;(t) < pmax). Hence, the second

term in (3.91) is always upper bounded by y2 ... Hence, it follows from (3.91) and (3.89) that
E[VA(t + 1) = VAOIQ)] < Kj + ooy + 81(Qpny (1)) — 26,0'(2) (3.92)

Unconditioning w.r.t distribution of Q(¢), and summing from 7 = 0 to 7 — 1 yields

T-1 T-1
BIVA(T)] =~ BIVAO)] < T(Ks + ping) + ) Elai@pn(0)] =26, ) BIOL(O]  (393)
t=0 =0
Ly Ki+ i EVZO] 1 %
T4 Bl 0] < 2, 2;5,1 " 25, ; E[81(Qpm/)I/T (3.94)

Recall the assumption that lim supy_, ., Z,T:_OI E[Qi ,(O]/T < oo,Vl € L,,,¥n' € P,. Hence, it follows
that lim sup;_, ZtT:_Ol E[QL()]/T < oo.

By principle of mathematical induction, we have limsup;_, Z,T:_OI E[Qf,(t)] /T < co,¥Vl € L.

Hence, the stationary randomized policy § stabilizes the system. 0

3.7.4 Results for section 3.5

Lemma 3.7.3. Given v is interior of Ap, the queues at node r are stable under the proposed scheduling

policy, i.e., limsupy_,. Y, 2 feF Elg/ (1]/T < oo

Proof of Lemma 3.7.3. Define V,.(Q(?)) := ZleLr(Qf,(I))z. Let AL(t) := 2 feF af(t) and D\(t) :=
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e d’ (¢). With a slight abuse of notation, let A,(Q(?)) := E[V,(Q(t + 1)) — V(Q(1))|Q(1)]

a@) = Y B0k + - 0lo) IR0 +2 Y CLEIQL: + 1) - gllQn]  (3.95)

ieL, lel,
= > El(A0) - D£<t>)2 Q0] +2 > QHOE[AL() - DL(1)IQ()] (3.96)
leL, leL,
< E[(AL())] + Ha
<K+2 ) QMNE[ALN)IQM)] - 2B ) OL)d!(1)]Q()] (3.97)
leL, leL,

where K = 3¢ 7, E[(AL(0))*] + | £/ | tiax

Recall that s;(¢) = 0,/ € L, — L/.(t), under the proposed policy. Consider the set Lgl)(t) c L(1)
defined as the set of links / € £, such that Q'(t) > w;(t) > 0. Note that Q'(1)D.(t) = QL(t)u;(t)s;(¢)
for the links / € Lﬁl)(t). For links [ € L/(t) - Lf])(t), either (1) = 0 or QL(¢) < p(t) by definition.
This implies QL(1)(1)si(t) < 12(0)si(1), VI € L1(t) — LL(z). Hence, we have

Y owmdn= > olwdn+ > 0lwdw (3.98)
leL, 1eL(r) 1eL;(n-L" ()
> > QOu®so) (3.99)
1eLV@)
= > QOmsty - > Q@) (3.100)
1eL;(0) 1eL;(n-L" ) ’
< up(t)
> > QL OmOsi(t) = | Lol e (3.101)
leL](t)

It follows from (3.97) and (3.101) that
AQO) < Ki+2 Y 0o =2BL Y QL nm(Dsin]Q()] (3.102)
leL, leL](1)

where K| 1= K+2| L, |2, Let s(t) = [51(0)]se £ denote the schedule under the randomized scheduling
policy in Lemma 3.7.2. Since the proposed algorithm maximizes %’;c £/ wi()QL(t)s)(t) for any given
u(1),Q(2), it follows that X e r1(y) w(OL(t)s)(t) > 2ieLl() wi(t)g(1)3,(). Hence from (3.102),

AQ) < Ki+2 ) 01w =2E[ ) Q810 (3.103)
leL, leL](t)

Note that VI € £, — L/(t), either w;(t) = 0 or QL(¢) < py(t). This implies QL (t)u;()§;(t) < ,ulz(t) <
Ho VI € Ly = L;(0). Therefore, 0 < 2 (| Lol = BlZie, - 1) CHOmOS(IQE]). Adding



3.7 Theoretical results 91

this to (3.103), we have

AQ) < Ky +2 ) 0Lt =2 ) OLOB[u(0)31(1)|Q()] (3.104)

lel, lel,

where K, = K| + 2| L,|u2,,,. Since the randomized policy §(¢) in Lemma 3.7.2 only makes decisions

based on the channel state u(r), we have E[});c OLw()5:(1)1Q()] = 2l QLOE[ui(1)8:(2)].
Moreover, since §(t) is a stabilizing policy, 36, > 0 such that E[u;(¢)$;(¢)] = v; + 6,,Vl € L,. Hence,

it follows from (3.104) that

MQW) <Ky +2 ) 040w =2 ) Q1) +6,) (3.105)
leL, leL,
=K, — 25, Z 0L(1) (3.106)
leL,

Therefore, E[V(Q)(t + D] -E[V(Q)(1)] < K, =26, Y ey, E[QL(¢)]. Summing from¢ = 0to T -1,

we have
T-1
B[VA(Q(T))] - EIV,(QO))] < TK, =26, 3" >" BIO}(1)] (3.107)
t=0 leL,
S © EQL0] K, E[VA(Q)0)]
- 4 < 421 (3.108)
Since (3.108) holds for all T > 0, we have limsupy_,., ¥/ Y 7, BIOL()]/T < 3¢ O

Lemma 3.7.4. Given v is interior of A(P), forn € N —{r}, 3K, €, > 0 such that

3 QLW + 1) = Wi)IQ()] < Ky — & Y. OL()

leL, lel,

under the proposed scheduling policy. Here, W(t) := V|(t) + oV}, (¢) for some a; > 0.

Proof of Lemma 3.7.4. We provide the proof in four parts. In the first part, we introduce a local

randomized policy and derive some properties. We make use of these properties to complete proof.

Local randomized policy and its properties

Consider alocal randomized policy which operates at 1, and makes decisions §°°°(¢) := [52“ )]s,

based on u,(t) := [(t)]icr, and sp, (r). We make use of the stabilizing policy §(¢) of Lemma 3.7.2
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for this construction. We define the policy as follows; VI € L,

P[§1°°(8) = 1 ta2), 5, (1) = 11 = 0 (3.109)

P[8;°°(t) = Upa(0), 55, (1) = O] = P[§1(1) = 1|a(1), 85, (¢) = 0] (3.110)

Note that s;, (¢) is a function of [{qr{,(t)} feFs M ()] wep,—{ny- Therefore from Assumption 2, p,(t)

is independent of s;, (#). Now using (3.110), we have

E[p(£)3)°(8)] 55, (1) = 0] = Z i (OPLpn(OIPLS (1) = (1), 53, (1) = 0] (3.111)
Hn(1)

= Z i @OPLnO1P[S:(2) = 1(85, (1) = 0, p(1)] (3.112)
Ha(t)

=E[p()3:(0)[35, (1) = 0] (3.113)

Since the system is stable under the policy §(¢), the expected arrival rate of packets into link [ is

v;. The expected output rate is E[x;(¢)$;(¢)]. Hence,

E[w(t)$1(1)] > v (3.114)
P[38p,(#) = OIE[p()3:(2)|85, (1) = 0] > v, (3.115)
E[u1()3:(1)13p,(t) = 0] > v /P[8p,(t) = 0] (3.116)

Since the queue at backhaul link b, is stable under §(¢), we have E[up, (¢)sp, (¢)] > v, Which implies
P[8p,(¢) = 1] > vp, [ fip,, and P[5, () = 0] < 1 — v, /fip,. Hence, it follows from (3.113) and (3.116),

that there exists 6 > 0

ELu(1)3)° (1)1, (1) = 0] = (1 = v, /fi,) " v + 6, VI € L, (3.117)

Definition of W;(¢) and the case s;, (¢) = 1

For [ € L,, define W,(¢) := V|(t) + a;V}, (t), where «; := 6/2vp, + vi/(fip, — Vb, ). From (3.27) for

[ € L, and b,,, we have
Wit + 1) = Wilr) = A7(0) = Dy(t) + an( A (1) = Dl (1) (3.118)

Note that whenever s, () = 1, we have s;(t) = 0,Vl € L,. Moreover, b, is scheduled only when
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up, (t) = fip, and Q'(t) > fip,. Hence from (3.118), forany [ € £,

E[W,(t + 1) = Wi()|Q(1), 5, (1) = 1] = E[AL(1)] + ay(E[AY" (D] - fin,) (3.119)
=vi+ (v, — fip,) (3.120)
= v+ (6/2vs, + i/ (i1, = vb,)) Vb, = fin,) (3.121)
= (b, /b, =1)6/2 <0 (3.122)

From (3.122), it follows that

E[ ), Q00 (Wit + 1) = Wi(0) [QQ0), 55, (1) = 1] = =8" > 04(0) (3.123)
leL, leLy

where ¢ := (fp, /v, — 1)0/2.

For the case s, (1) =0

B[ > 0L (Wit + 1) = Wi(1)) |Q(1), 51, (1) = 0] (3.124)
lel,
= E[ ) 0001 + avy, = Dy(DIQ(1), 5p, (1) = 0] (3.125)
lel,
= > 0O+ am,) = ). OLOEIDLDIQ(®), s, (1) = 0] (3.126)
lel, 1leL)(r)

st =0l € L, — L)

Consider the set ££,1)(t) C L/(¢) defined as the set of links [ € £, such that Q') > w(t) > 0.
Note that Q',(t)D. (1) = Q' (t)u;(t)s;(t) for the links [ € Lgl)(t). Hence from (3.126), we have

B[ > 040 (Wit + 1) = Wi(0)) |Q(¢), 53, (1) = 0] (3.127)
leL,
< D OO0+ avs) = > OLOEmDsiDIQ(), 85, (1) = 0] (3.128)
lel, le.Lf})(t)
= > OO0+ avs) = ) CLOEm(Dsi(OIQ), 51, (1) = 0]
leL, leL] ()

(3.129)
D QLB )s0)|Q), s, (1) = 0]

le L (-LY (1)
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For the links I € £/,(t) — LY(1), either (1) = 0 or QL(t) < (). This implies Q! (1) ()si(t) <
,ulz(t)sl(t), Vie L (t)— Lﬁll)(t). Hence from (3.129), we have

B[ D 040 (Wit + 1) = Wi(0)) |Q(1), 5p, (1) = 0] (3.130)
leL,
< > 0L +avs) = Y CLOBLmOsi()QQ), 55,(1) = 01 + | Lal e (3.131)
lel, leL] (1)

Since the proposed policy maximizes 3¢ /7 ;) Q' () (t)si(t) whenever s;, (¢) = 0, we have

B[ ). OhOpm®)si(t)Q(),5,(t) = 01 2 B[ > QhLO)i(t)3}(1)lsy, (1) = 0]
leL) (1) le L (?)

Hence, it follows from (3.131) that

B[ D 040 (Wit + 1) = Wi0)) |Q(1), 5p, (1) = 0] (3.132)
leL,
<Ll bt + D, QW01+ av,) = D QLOBL(1)5) (1)]s5, (1) = 0] (3.133)
leL, leL](r)

Note that VI € £, — L/ (t), either () = 0 or Q',(t) < py(¢). This implies QL (1) (1)8;(t) < ylz(t) <
Hinaxs V1 € L= L;(1). Therefore, 0 < | Lot —E[Xie £, - 30 Qu(O (0317 (0)lsp, (1) = 0]. Adding
this to (3.133), we have

B[ > 0L (Wit + 1) = Wi(1)) |Q(1), 51, (1) = 0] (3.134)
leLl,
<2 Lalpiman + D OO+ rvp,) = > O(OELu(6)5) (1), (1) = 0] (3.135)
leL, lel,

It follows from (3.117) and (3.135) that

E[ ) QL(t) Wit + 1) = Wi(0)) |Q(2). 5p, (1) = 0] (3.136)
leLl,
O\ Ll s+ Y, OO0 + v, = 3 Oh(0) (1= v, /i)™ v1 + ) (3.137)
lel, leL,
2Ll = 6/2 ) Oh(1) (3.138)
leL,

g =6/2v, +vi/(fip, — Vb,)
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Final steps of the proof

Note that
B[ D Q46 (Wit + 1) = Wi(1)) |Q(1)]
el (3.139)
= D Plsy,(0) =IQOIBL Y Oh(e) (Wt + 1) = W) |Q(1), 50, (1) = i]
i€{0,1} lely
It follows from (3.138) and (3.123) that
D OLOBIWi(r + 1) = W0)Q(N] < Ky — & D O4(0) (3.140)
leL, leLy
where K, = 2| L,| 2., and €, = min{5/2,6"} O

Proof of Theorem 3.5.1. We use proof by induction. Firstly, lim sup,_, ZIT:O 2 feF E[q,{i(r)] J/t < o
is true for m = r from Lemma 3.7.3.
Now suppose limsup,_,, Y./ _, X feF E[q,l,;(r)] /t < oo for all the nodes m in the path from n to r
excluding n, i.e., P, — {n}. Now we will show the same is true for m = n.
Consider the function V,(Q(t)) = X¢p, le(t), where W(t) is defined in Lemma 3.7.4. We
consider the conditional drift A,(Q(¢)) := E[V,(Q(r + 1)) — V,,(Q(1))|Q(1)],
An(Q(1)) = Z E[(Wi(r + 1) = Wi(1))*|Q(1)] +2 Z Wi@OE[(Wi(r + 1) = Wi(1))1Q(1)] (3.141)

leL, lel,
<E[(AL(O)+a A2 ()2 ]+(1+07) e

< Ky +2 > {Wilr) = QLOBIW(t + 1) = Wit Q)] +2 D QLB + 1) = Wi()]Q(1)]
leL, leL,

(3.142)
Since Wj(t + 1) — Wy(t) < AL(r) + a/lA[,’”(t), the middle termis < 2 3},c » {W;(2) - QLY (v + aywp,),
which is a linear function of Q,)(t) := {q,{:l(l)}feg-jmepn_{n}. Let g(Qu(n)(1)) := 2 Xjcr, AWiI(t) -
Q' ()} (v; + a;vp,). The final term is < 2K, — 2€, 2ler, Q! (t) from Lemma 3.7.4. Hence,

AQ(1) < K} + 2Ky + 8(Qpn)(1) = 26, Y Qh(1) (3.143)
leLy

Let K} := K} +2K,. Wehave E[V,(Q(t+1))-V,(Q)(1)] < K +E[q(Qp(n)(1)]-26, X1 1, BEIOL(1)].

Summing fromt =0to 7 — 1,

T-1 T-1
E[V,(Q(D))] - B[VAQ(O))] < TK + ) Blg(@uu()] =26, )| > E[QL(1)]  (3.144)
t=0 t=0 le L,
1o Sies, BIOKO! _ Ky EBIVAQOD] | Ei Blg (@ ()
T ~ 2¢, 2Te, 2T e,

(3.145)
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Hence, we have lim sup;_, ZIT:_Ol 2ler, E[Q(#)] < 0. By principle of finite induction, this is true

foralln e N. O]



Chapter 4

Distributed Resource Allocation and Flow

control Algorithms for k-tier HetNets

4.1 Introduction

The 3-tier HetNet model presented in chapter 2 has wide applicability as evident from the scenarios
that are modelled under the framework. However, the strong trend in 5G towards increased number
of tiers indicates that the future architectures may have more than 3 tiers. For example, integration
of terrestrial cellular infrastructure with aerial communication technologies such as high altitudue
platforms (HAP) and low altitude platforms (LAP) is being considered for future communication
[26, 64]. Under such an integrated setup, a 4-tier network can be formed by HAP, LAP, LTE-macro
and LTE-pico cell. Figure. 4.1 (from [64]) shows an example of a 5 tier HetNet with SATCOM at the
top. (In practice, SATCOM uses a different spectrum than the other 4 tiers in Figure. 4.1.)

In this chapter, we introduce a K-tier HetNet model, which generalizes the key ideas behind the 3
tier framework introduced in Chapter 2. As in Chapter 2, all the tiers are assumed to share the same
spectrum.

However, there are key differences in the models.

* In this chapter, we consider optimization of resource allocation but not user association (unlike
Chapter 2 which considered both). The cell association is assumed to be given, e.g., fixed

cell-bias values.
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Outer space

Sources Destinations

Ground level

Figure 4.1: An example of a multi tier HetNet [64].

* We extend the framework so that co-tier interference (i.e., interference that occurs between two
closely spaced cells in the same tier) can also be managed via resource partitioning, which was

not present in Chapter 2.

* We propose a distributed dynamic flow control algorithm for the k-tier HetNet based on the

structure of the resource allocation problem.

The main feature of k-tier framework is a novel interference graph model. For an illustration, see
Figure. 4.2. In Figure. 4.2, node r is the tier 1 BS, which interferes with the rest of the BSs in the
network. This is signified by the edge joining r to H,. Here, H, is analogous to the sub-network which
is operating in the coverage area of r. It can be noted that there is a graph inside H,, which models the
interference constraints at tier 2. Here nodes ny,ny, n3, n4 are the tier 2 BSs. For co-tier interference,
n; is joined by an edge to n; if there is co-tier interference between n; and n;. As with H,, H,, is
analogous to the sub-network which is operating in the coverage area of n;. The edges connecting n;
to Hy, represent the cross-tier interference caused to the lower tier BSs in the sub-network H,,.

The minimum resource clearing problem for the network is a LP formulation which involves all
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Figure 4.2: Example Graph.

the nodes. The new interference graph allows us to consider the clearing time problem as a series
of recursive local formulations at each level. For example in Figure. 4.2, the formulation at r only
involves nodes {ny,ny,n3,n4}. The formulation at a node only requires the interference relations at the
tier level. We show that the framework is scalable in the number of tiers. Furthermore, when there
is additional structure in the co-tier graph, we provide resource allocation algorithms which are linear

complexity in the size of the network.

4.2 System Model

We consider a K-tier HetNet, with a tier-1 BS r covering a wide area. There are several smaller
BSs of different tiers operating in the coverage region of the tier 1 BS r. We review the key abstractions

from the 3-tier HeNet framework in chapter 2 in the following. Under the K tier model,

1. The BSs can be divided into tiers based on their coverage area. Generally, the lower tier cells
have BSs at higher altitudes, which have larger coverage areas. Several smaller cells (of higher

tier) can operate in the coverage area of a lower tier cell.

2. A UE can potentially associate and get service from multiple different tier BSs.
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3. Cross-tier interference - a lower tier BS causes debilitating interference to the smaller cells (of
higher tier) in its coverage area, if using same resources. i.e., a transmission from BS n of tier
i causes interference to the transmissions in a tier j cell in the coverage area of n, where j > i.
This interference can be avoided by resource partitioning, e.g., by using ABS (Almost Blanking

Subframes) scheme in a two tier network.

R(r) is the set of BSs of tier 2 which are operating in the coverage area of BS r. In general, for a
BS n of tier i, R(n) is the set of BSs of tier i + 1 which are operating in the coverage area of BS n. For
a BS n, U(n) denotes the set of users associated with n. We represent the HetNet with a rooted tree,
(e.g., see Figure. 4.3). We represent the HetNet using the rooted tree G = (V, E,r), where V is the set
of all the BSs.

Before proceeding further, we introduce some terminology for rooted trees. Let (V, E,r) denote
a rooted tree, where V is the set of nodes, E is the set of edges, and r € V is the root. Two nodes
ni,ny € V are neighbors iff there is an edge connecting n; and n,. For a node n € V — {r}, we refer
to p as the parent of n iff p is the neighbor of n on the path from » to r. Similarly, we refer to n as
the child of p. Note that the BSs in R(n) are children of the BS n in the graph representation. If a
node a is in the path from n to r, then we refer to a as an ancestor of n. Similarly, we refer to n as a
descendant of a. For n € V, let D(n) denote the set of all the descendants of n in G, and A(n) denote
the set of all the ancestors of n in G.

The root r is the tier 1 BS. All the other BSs are the descendants of r in the graph. Similarly, for a

BS n in tier i, the set D(n) is all the BSs of tier j > i that are operating the coverage region of n.

T tier 1
M1 o ng N4 tier 2
6 ny 718 .
ns, n11 tier 3
Nog nio n12

13/ Ny D ni6 niv, 7218 \7219 n20/ no /222 123 4
tier
tier 5

N24 MN25 MN26 N27 MN2g N29 n3p N31 N32 n33z N34 MN35 MN36

Figure 4.3: Graph Representation.
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For example, Figure. 4.3 shows the rooted tree representation of a 5-tier HetNet. The BS r is the
root. There are 4 second tier BSs {"i},tp all of which are in the coverage of r. There are 8 BSs in the
third tier, each BS here is in the coverage of the parent BS (in second tier). Note that the rooted tree

mirrors the hierarchical structure of the HetNet.

0 ms 10, ms

Resource Block

SIOLLIRD-(NS g

<
<

180 KHzi

3
. A

: ! Slot
54—4 Subframe | Frame (7 symbols)

¢

Figure 4.4: LTE Frame structure. Here, each blue square represents a resource block (RB).

We consider a orthogonal resource sharing scheme such as an OFDMA system, with a resource
block structure similar to the one present in LTE (see Figure. 4.4). In LTE, each frame is composed
of 10 slots, each slot with a length of 1 ms. The available bandwidth is divided into several carriers,
each carrier has width 180 KHz. A resource block (RB) is the smallest unit of resource that can be
allocated to a link. In LTE, a RB is 180 KHz wide (1 carrier) in frequency and 1ms (1 slot) long in
time. Suppose there are N, carriers available for transmission, then number of RBs in a LTE frame is
Ngp := 10N,. Under this setup, we consider resource allocation (i.e., allocating RBs) for a downlink

HetNet.

4.2.1 Interference constraints

There are two kinds of interference that can occur in the K tier network. 1) Co-tier interference,
which is the interference caused by transmissions of BSs in the same tier. 2) Cross-tier interference,
which is the interference caused by transmissions of lower tier BSs (which are higher up in the tree G).

When the interference is significant, it can cause severe rate degradation to the affected users. In the K
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tier model, we consider resource partitioning to avoid simultaneous transmissions of two BSs which
will result in significant interference for a user of either BSs. We model these constraints imposed by

interference as follows.

1. Co-tier interference - Consider a BS m in tier i, where i < K. We model the co-tier interference
constraints as follows. For a BS n € R(m), I.(n) € R(m) is the set of BSs in tier i + 1 which

cannot be scheduled with BS 7 on the same RB.

2. Cross-tier interference - We model the cross-tier interference constraints as follows. A BS in
D(n) (i.e, a descendant of n) cannot be scheduled with any BS in the set I.(n) | J{rn} on the same
RB.

Consider the example in Figure. 4.3. We say two nodes are siblings in a rooted tree, if they have
the same parent. In Figure. 4.3, I.(n;) is the set of adjacent siblings of n;, i.e., I.(n;) = {nj_1,n;+1} if
both n;_1,n;; are siblings of n;, or if n;_; is a sibling of n; but not n;,1, then I.(n;) = {n;—1}, or if n;;;
is a sibling of n; but not n;_y, then I.(n;) = {n;;1}.

For this example, I.(n;) = {n2}. Therefore, n; and n, cannot be scheduled on same RB due to
co-tier interference. And, ns € D(n), hence ns cannot be scheduled along with either n; or n; due to
cross-tier interference.

Under these interference constraints, a BS n cannot be scheduled with any BS in the set /(n), where

I(n) = i(/n_)/ U D(n) U D(m) U A(n) U 1.(m) 4.1

mel.(n) meA(n)
co-tier interference

cross-tier interference from »n to higher tiers cross-tier interference from lower tiers to n

We say two BSs m,n interfere if they cannot be scheduled together under the interference con-
straints, i.e., if n € I(m), m € I(n).

Resource allocation for the K-tier HetNet model has to allocate RBs to a set of BSs such that the
interference constraints are not violated. There can be exponentially many number of such sets with
the increase in number of tiers and number of BSs. In this chapter, we provide distributed and scalable
resource allocation algorithms for the K-tier HetNet. We consider the minimum clearing resource
optimization for the K-tier HetNet model. We will propose distributed resource allocation algorithms
based on the solution. We will show that resource allocation for the example in Figure. 4.3 can be

found with linear complexity using the algorithms.
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4.3 Problem Formulation

Figure 4.5: Graph showing BS n and its UEs. Here, each edge corresponds to the wireless link
between n and a UE in U(n).

Given that the same RB cannot be allocated to interfering BSs, the rate of the link between BS n
and UE u € U(n) (given in the following) is calculated provided the BSs in /(n) are muted. The rate
of a link / between BS n and a UE u € U(n) (in bits/RB) is

Pn8nu
Zme[’(n) Pm8mu + o?

R,=Wlog, 1+ 4.2)

where I'(n) := V — I(n), and W is the size of an RB in Hz X sec.

Each UE u € U(n) has a throughput demand of «,, (in bits/frame). @, can be interpreted in several
ways. For example, it can be 1) The rate of data requests by u (average number of bits arriving per
frame), 2) It can be a QOS metric that the user desires, e.g., A user may have a latency requirement of
transmitting @, bits in every frame, 3) It can be flow control metric, being adapted based on congestion
in the network. This demand «, has to be met by allocating the appropriate number of RBs, while
adhering to the cross-tier interference constraints. Figure. 4.5 depicts a graph showing the BS n and
the UEs in U (n). In Figure. 4.5, the edges represent wireless downlinks corresponding to the UEs!.

Given the demand «,, we can calculate the load of a UE u as 7, := a,/R, (in RBs/frame). T,
is the number of RBs which need to be assigned to UE u in each frame. For this setup, we consider
the minimum resource clearing problem, which is defined as the minimum number of RBs required
to satisfy the load 7, for all u € |J,cy U(n) such that no two cross-interfering BSs are using the same

RB. We introduce some definitions and notation that will help with the formulation of the problem.

Definition 4.3.1. A feasible set of a graph G’ C G isaset of BSs S C G’ suchthatVn € S,I(n) (S = ¢.

I'We note that this graph is different from G, where each node of G is a BS, and the edges are used to represent the

hierarchy of the different tiered BSs.
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Definition 4.3.2. A maximal feasible set is a feasible set that is not a subset of any other feasible set.

Let S denote the set of all maximal feasible sets for the graph G. Let 7(n) := X,,cqy(n) Tu denote the
aggregate load of a BS n € V. We formulate the minimum resource clearing problem as the following

linear program (LP) (4.3).

min Z fs

SeS

S.t.

Z fs = 7(n),Vn € G;

S:neS

fs>0,VSeS 4.3)

where fs is the number of RBs allocated to a feasible set S. By definition, the BSs in a feasible
set S can use the allocated RBs simultaneously without violating the interference constraints. The
constraints of LP (4.3) ensure that the load T (or the demands «) is met. It can also be noted that under
any allocation, if a RB is allocated to a non-feasible set, the interference constraints will be violated

by definition.

4.3.1 Feasibility of the demand vector

Let Ngp denote the total number of RBs in a frame, and let { f¢ }ses denote an optimal solution of

the LP (4.3).
Definition 4.3.3. The demand vector @ or a load vector 7 is feasible iff Y. scs f§ < Nrp

Therefore, the solution of LP (4.3) can determine whether a given a (or 1) is feasible, and also

provides a scheme which satisfies the given demands.

4.4 Scalability of the solution in number of tiers

The direct approach to solving LP (4.3) using a LP solver is laborious and infeasible for large
networks, since the number of feasible sets grow exponentially with the number of BSs. In this

section, we provide a distributed algorithmic solution which will show that the complexity of the
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problem does not grow exponentially in the number of tiers. We introduce necessary terminology for

discussion.

N24  N25 MN26 n27  N2g MN29 n3o MN31 N32 ngz N34 M35 N36

Figure 4.6: HetNet H[r] for the example in Figure. 4.3.

For a BS n € V, let H[n] denote the induced sub-graph of G with the vertex set as the descendants
of n (in graph G) i.e., D(n). e.g., Figure. 4.6 shows H[r] for the example considered in Figure. 4.3.
H{n] represents the smaller HetNet that is operating in the coverage area of n; it is the network formed
by smaller cells in the coverage area of n. Let Sy, denote the set of all the maximal feasible sets for
the graph H[n]. We can formulate the minimum resource clearing problem for the HetNet H[n] as LP
4.4).

min Z fs
S€SHn)

S.t.

Z fs = 1(m),Ym € H[n];

S:meS

fs=0,VS € SH[n] 4.4)

where fs is the number of RBs allocated to a feasible set S. Let y(H|[n]) denote the optimal value of
LP (4.4) for the graph H[n]. Note that y(H|[n]) is minimum number of RBs required to satisfy the
HetNet represented by H|[n].

Lemma 4.4.1. Consider p,q € R(n), where p # q.
1. Any node p| € H|[p] does not interfere with any node q, € H|q].

2. Suppose q interferes (does not interfere, resp.) with some node p; € H|p], then q interferes

(does not interfere, resp.) with each node in H|p].
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Proof. For 1, note that the set of nodes in H[n] that interfere with p; are given by I(p) () D(n) (since
H[n] is the induced subgraph of G with the vertex set D(n)). We will show that I(py) () D(n) does not

contain any nodes from H|[q].

Recall that for any p; € H[p],

1p) = Leo| oy ) peml Jae) [ L (4.5)

mel.(py) meA(p1)

Consider the example in Figure. 4.7. We say two nodes in a rooted tree are siblings if they have
the same parent. For the example in Figure. 4.7, for each node m, we will take I.(m) to be the set
of siblings of m. An illustration of I(p;) is given in the Figure. 4.7. Here, I(p;) is the set of all the

circled nodes. The individual components of /(p;) (in (4.5)) are given in the legend in Figure. 4.7.

Figure 4.7: Illustration of I(py).

Note that since p; € H[p], all the nodes in I.(p1) U D(p1) Uper,(p,) D(m) (In Figure 4.7, these
nodes are circled in blue and green) are contained in D(p) . Similarly, for all the ancestors a; of p; in
D(n) — {p}, {a1} U I.(a1) € D(p) (In Figure 4.7, a; is the parent of p; and I.(a;) is the sibling of a;.

It can be noted that both a; and its sibling are descendants of p). The only remaining ancestor of p;
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in D(n) is p. Hence, it follows that

1(p1) (D) < D) i} ) Le(p) (4.6)
1(p) (D) € D(p) | R(w) @7

Therefore, from the nodes in H[n], I(p;) only contains nodes from H[p] and R(n). This completes
the proof of 1.

For 2, suppose p; € H[p] interferes with ¢ € R(n) — {p}. This implies ¢ € I(p;). Note that p is
an ancestor of all the nodes in H|[p], and since ¢ € R(n), it is in the same tier as p. It follows that
q ¢ 1:(p1) U D(p1) Uper,(p,) P(m), since q is in a lower tier than p;. Similarly, ¢ ¢ A(p;) since p
is the ancestor of p; in the tier corresponding to g. Hence, it only remains that ¢ € I.(m) for some
m € A(py). Clearly, here the m must be p. Hence, g € I.(p). Now since, p is an ancestor of all the
nodes in H[p] and g € I.(p), it follows that ¢ € I(p;) for each node p; in H[p].

Conversely, suppose p; € H[p] does not interfere with ¢ € R(n)—{p}. It must follow that g ¢ I.(p)
(Otherwise, it leads to the contradiction that ¢ € I(p;) because, g € I.(p) and p € A(p;)). Now, since
p is an ancestor of all the nodes in H[p] and g ¢ I.(p), it follows that g ¢ I(p;) for each node p; in
Hlp]. O

There is an underlying recursive structure to the K-tier model which will be used to derive a
recursive solution to LP (4.4) and to LP (4.3) by extension. We now introduce the terminology and

the notion of interference graphs necessary for the discussion.

4.4.1 Recursive Structure of HetNet

Definition 4.4.1. In the interference graph notation, two nodes are joined by an edge if and only if

they interfere.
Definition 4.4.2. A leaf node of a tree is a node such that it has no children.

We use interference graphs? to illustrate the recursive structure of the HetNet. In the interference
graph notation, two nodes are joined by an edge if and only if they interfere or conflict. The edges will

be used to model the various interference constraints that occur in the HetNet.

2Interference graphs (a.k.a conflict graphs) have been used in the wireless scheduling literature (e.g., [11], [15]) to
model the interference constraints that occur in link scheduling, where each node in the interference graph represents a

link. Here, we use them in a slightly different manner. The nodes in our model correspond to the BSs in the network.
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We define interference graphs H, corresponding to each HetNet graph H[n]. Note that for a leaf
node n in G, there are no descendants, i.e., D(n) = ¢. Hence, H[n] does not exist for leaf nodes in
G. Similarly, the interference graph H, does not exist for the leaf nodes n. For the other nodes, we
define the interference graphs H, in (4.8), (4.9). We note that there are two roles for H,, s under this
definition. Firstly, the graph definition for H, is given in (4.8), (4.9). Secondly, {H,,}ner(n) act as

auxiliary nodes (i.e, nodes not present in G) in the graph definition of H, (see (4.9)).

1. For a parent node n of leaf nodes (i.e., if D(n) = R(n)),

H, := (R(n), ¢) (4.8)
where ¢ is the empty set.

2. For anode n € G such that D(n) > R(n) (i.e., has more than one generation of descendants),

H, = (R(n) U {Hm}meR(n); En) 4.9)

where the edge set E, is the set of edges connecting 1) m to nodes in I.(m) for each m € R(n),

2) m to node H,, for each m € R(n), and 3) m to nodes {Hy }recy,.(m) for each m € R(n).

For a node n with at least two generations of descendants, (4.9) provides a recursive definition of graph
H, in which previously defined graphs {H,, },er(n) are nodes. The node H,, corresponds to the HetNet
H[m]. There are two types of edges in the graph H,,. The first type is the set of edges connecting m
to nodes in I.(m). These model the co-tier interference constraints of node m. The second type is the
set of edges which connect the node m to the nodes {Hj }xe(my | 1.(m)> for each node m € R(n). These
edges model the cross-tier interference from m to the BSs in H[k] (i.e, descendants of k), for each
k € {m}JI.(m).

For example, consider the graph shown in Figure. 4.3 . The interference graph H, is shown in
Figure. 4.8.

The recursive graph structure shown in Figure. 4.9 captures all the interference constraints that

occur in the network given in Figure. 4.3.

Definition 4.4.3. An independent set J of a graph G’ is set of nodes such that no two nodes in J are

connected by an edge in G’.
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Figure 4.8: Interference graph H, for the example in Figure. 4.3. H|[r] is shown in Figure. 4.6.

n20.  Nay 7122 1123
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Figure 4.9: Figure illustrating all the interference graphs that occur in Figure. 4.3.

Definition 4.4.4. A maximal independent set is an independent set that is not a subset of any indepen-

dent set.

Let 95 denote the set of all the maximal independent sets of the graph G’, where G’ € {H, },,ev.

4.4.2 A mapping from Sy, to Ju,

Lemma 4.4.2. Consider a maximal feasible S of graph H|[n], where H[n] is the induced sub-graph of
G with vertex set D(n). Let S, := R(n) (S and for a child m of n, i.e., m € R(n), S,, := H[m](S.

The following statements hold true.
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1. S = Sn Umeﬂ(n) Sm
2. Suppose S,, # ¢ for some m € R(n), then S,, is a maximal feasible set of H|m].

3. Js (defined in the following) is a maximal independent set of graph H,

Js =S, U {Hyy : Sy # ¢} (4.10)
meR(n)

For an illustration of this Lemma, see Figure. 4.10.

(a) The nodes colored in red form a maximal feasible set S of graph H[r]. The graph H[r] is

shown in Figure. 4.6

n1 19 73 94

H”’I Hn H’VL:s

2

(b) The nodes colored in blue form a
maximal independent set Jg of graph
H,. The graph H, is shown in Fig-
ure. 4.8

Figure 4.10: Figure illustrating maximal feasible set S of graph H[r] and the corresponding maximal
independent set Jg in graph H,, for the example in Figure. 4.9. In this example, S = {n1, ng, nz9,n2,}

and Jg = {ny,Hy,,}. Also, S, = {n1}, Sy, = ¢, S, = @, Spy = {no,n20,n22}, Sy, = .
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Proof. 1.

For 1, note that H[n] is the induced subgraph of G with the vertex set D(n) and also D(n) =
R(1) Upmern) D(m). Hence, each node in H{n] is either contained in R(n) or some {H[m]}er(n)- It

follows that each node in S is either contained in S, or in some {S,, }er(n)-

To show 2, we use proof by contradiction. Suppose that S, # ¢ is not a maximal feasible set of
H|[qg] for some g € R(n). Hence, Ip € H|q] such that S, | J{p} is a feasible set of H[q].

It follows from Lemma4.4.1 1. that p does not interfere with any node in S,,,, foreachm € R(n)—{q}
such that S,, # ¢. It follows from Lemma 4.4.1 2. that p does not interfere with any node in S,,.
Hence, it follows that S | J{p} is a feasible set of H[n], which is a contradiction to the assumption that

S is a maximal feasible set of H|[n].

We will first show that Jg is an independent set of graph H,,, using proof by contradiction. Suppose
not, it follows that there exist p,g € R(n) such that either a) p,q € Js, and p, g are connected by an
edge. orb) p,H, € Js, and p, H, are connected by an edge.

Suppose a) is true. It follows that p € I.(q) and g € 1.(p). Since p,q € S, this is a contradiction
because S is a feasible set.

Suppose the other case b) is true. It follows that p € I.(g) and S, # ¢. Since g is an ancestor
of all the nodes in S, and p € I.(q), it follows that p interferes with all the nodes in S,. This is a
contradiction since {p} [J S, C S is a feasible set.

Hence, it follows that Jg must be an independent set of H,,.

Now, we will show that Js is a maximal independent set of H, using proof by contradiction.
Suppose not. There must exist either a p € R(n) such that either ¢) Js (J{p} or d) JsU{H,} is an
independent set of H,,.

Suppose c) is true. It follows that p is not connected to any of the nodes in S,, which implies
p ¢ I.(m) for each m € §,.. Also, p is not connected to any of the H,, nodes for which S, # ¢. Hence,
p ¢ 1.(m) for any m such that S,, # ¢ by construction of the interference graph. Therefore, it follows

that p does not interfere with any node in S, U,yer(n) Sm = S, which implies that S {p} is a feasible
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set of H[n]. This is a contradiction since S is given to be a maximal feasible set.

For the other case, suppose d) is true. It follows that H), is not connected to any of the nodes in §,,.
This implies p ¢ I.(m) for each m € §,,. Consider a maximal feasible set S, of H|[p]. Since, p ¢ I.(m)
for each m in §,,, any node in S,, does not interfere with any node in S,,. It follows from Lemma 4.4.1.2,
that any node in S, does not interfere with any node in U,,cr(n) Sm- Hence, it follows that any node
in S, does not interfere with any node in Sy, U ,eg(n) Sm = S. Hence, S S, is a feasible set of H{n],

which is a contradiction since S is given to be a maximal feasible set. [

Consider the maximal feasible sets S| = {ny,n9, noo,n22}, S» = {ni,n10,n12} and S3 = {ny, ng, n29, n3s}
of graph H[r] (for the considered example given in Figure. 4.6). Under the construction given in
Lemma 4.4.2, Js, = {n1,H,,} fori = 1,2,3, i.e., all the three maximal feasible sets correspond to the
same maximal independent set {n, H,,}. For an illustration, see Figure. 4.11. Intuitively, the maximal
feasible sets in Sy, can be grouped into sets corresponding to each maximal independent set in J,
using the construction in Lemma 4.4.2. In the following Lemma 4.4.3, we provide a mapping which
performs this task. In what follows, we will propose a LP based on the maximal independent sets in
Ju,. We will make use of the mapping in Lemma 4.4.3 to establish that this LP has the same optimal
value as that of LP (4.4). The new LP is simpler to solve since there are fewer maximal independent

sets of H,, than there are maximal feasible sets of H[n].

Lemma 4.4.3. Consider the mapping Y : Spp,) — Ju, such that Y(S) = Js, where Js is defined in
(4.10) in Lemma 4.4.2). Let S; C Sgyy,) denote the set of maximal feasible sets S which are mapped
toJ,ie.,Y(S)=J,VS €S8j. Then,

1. Sjl mS]Z =¢,VJ1 # )b
2. UJean SJ = SH[n]

Proof. Since Y(S) = Jg, it follows from the definition of Jg (4.10) in Lemma 4.4.2 that there exists a
unique Jg for each S € Spy,. Hence, each § is only in exactly one S;. This proves 1.

For 2, note that for every S € Sy, it follows from (4.10) in Lemma 4.4.2) that Y (S) exists. Hence,
every S must be in a set S; for some J € Jy,. Hence,

L) S 2Sum (4.11)

]Ean

Also since S; C Sy, for each J, it follows that Ujejﬂn S € Supn)- Hence, Ujejﬂn Sy =8up U
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(a) The nodes {n;,ny, npp,n;} colored in red form a maximal

feasible set S; of graph H{[r].

(b) The nodes {ny,n;p,n12} colored in red form a maximal

feasible set S, of graph H[r].

ni n2 3 94

H"’l an H’”.’i
(¢) The nodes {ny, ng, ny9, n3s} colored in red form a maximal (d) The nodes colored in blue form a
feasible set S3 of graph H|[r]. maximal independent set J of graph H,.

The graph H, is shown in Figure. 4.8.

Figure 4.11: Figure illustrating the mapping Y of Lemma 4.4.3. The graph H[r] is shown in
Figure. 4.6. The maximal feasible sets S, S, S3 of H[r] are shown in Figure. 4.11(a) - Figure. 4.11(c).
The maximal independent set (of H,) corresponding to each of the sets {S; }l.3=1 is the set J shown in

Figure. 4.11(d). Hence, Y(S;) = J, foreachi = 1,2,3.
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4.4.3 Recursive solution of LP (4.4) using LP (4.12)

Consider LP (4.12), which is a recursive formulation of the resource clearing problem using
interference graphs.
min Z fr
JGan

S.t.

Z fr = w(m),¥m € R(n):

J:meJ

> = y(HIm]),VH, € Hy;
J:Hy,eJ

fr>0,VJ € Ty, 4.12)

where f7 is the number of RBs allocated to a maximal independent set J, and y(H[m]) is the optimal

value of LP (4.4).

Theorem 4.4.4. y(H[n]) is the optimal value of LP (4.12) for graph H,, where y(H|n]) was defined
to be the optimal value of LP (4.4)

Proof. See section 4.6 at the end of the chapter. [

4.4.4 Distributed implementation of the recursive solution

Based on Theorem 4.4.4, the recursive solution described in Algorithm 4 can evaluate the optimal
minimum resource clearing LP (4.3). Figure. 4.12 depicts a distributed message passing scheme

which can be used to implement Algorithm 4.

4.4.5 Upstream Message Passing and Downstream Resource Allocation
4.4.5.1 Upstream message passing

The message passing scheme depicted in Figure 4.12 can be used to evaluate the optimal value
of LP (4.3). Each node n in the tree G can obtain the knowledge of {r(m),y(H[m])}ner(») via the
messages received from the children in R(n). Using this information, the BS n can evaluate the LP

(4.12). Therefore, node n can evaluate the optimal value y(H[n]) and a solution which achieves it.
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Algorithm 4 Calculating y(G)
1: for aleaf node n € G do

»

v(H[n]) =0 // since H,, does not exist for a leaf node
3: end for
4: for a non-leaf node n € G do

5: Formulate LP (4.12) using the values {7(m)}er(n) {Y(H[m])}mer(n)- Solve LP (4.12) to

evaluate y(H|[n])
6: end for
return y(G) = y(H[r]) + 7(r) // where r is the root of the graph G.
[v(H[n])
n
7(m) vl(H
______ MM | === ===

Figure 4.12: Distributed computation of y(H[n]). Here, the upstream message to n are sent by the
children m € R(n).

Hence, minimum clearing time y(G) can be evaluated by applying Algorithm 4, in a distributed

manner shown in Figure 4.12.

4.4.5.2 Downstream resource allocation

Given that the upstream message passing phase is completed, an optimal distributed resource
allocation can be performed as follows.

The root BS r initiates the downstream allocation by allocating two sets of RBs to each child
m € R(r). The first set is 7(m) RBs to satisfy the demand of BS m, and the second set is a separate
v(H[m]) to satisfy the demand in sub-HetNet H[m]. These sets of RBs are allocated according to the
solution of LP (4.12) for H,. Note that the optimal solution of LP (4.12) is known (i.e., evaluated

during the upstream phase), and hence the allocation can be done using the minimum number of RBs,
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i.e., y(H[r]) RBs.

Upon receiving the allocated RBs (from the parent node), a BS n can follow a similar procedure.
Using the H[n] RBs provided by its parent, n can allocate two sets of RBs to its children, according
to the solution of LP (4.12) for H,. This scheme is optimal since a total of y(G) RBs are used for

allocating to all the nodes, which is optimal value of LP (4.3).

To attain the optimal solution, the RBs must be re-used (in an optimal manner) among the non-
interfering BSs, which is done during the downstream allocation phase. The proposed algorithm
achieves optimal re-use of RBs (i.e., using minimum possible RBs) based on local decisions, as
follows. Based on the solution of LP (4.12), a BS n knows the which RBs to allocate to the BSs
in R(n) and to the sub-HetNets {H[m]},,er(n), (from the y(H[n]) RBs allocated by the parent). In
other words, the BS n knows the re-use at its tier, i.e., among its children and their corresponding
sub-HetNets. However, the BS n does not know how the y(H[m]) RBs allocated to sub-HetNet H|[m]
will get used further down the tree. This resource allocation will occur at a later step in the algorithm,

as it progresses downstream.

4.5 Complexity of LP (4.12)

So far in the chapter, we have shown that the minimum resource clearing LP (4.4) is scalable in the
number of tiers. The distributed algorithm provided in the previous section shows that the complexity

of the complete solution is the sum of complexities of the smaller LPs (4.12) (at various tiers).

The complexity of LP (4.12) can also be NP hard (in general). The number of independent sets of
graph H,, can grow exponentially in the number of nodes. In this section, we focus on topologies of
graph H,, with a certain structure. We will show that a greedy resource allocation algorithm is optimal

(i.e., solves LP (4.12)) for these topologies.

We start with a simple example. Consider the special case where I.(m) = ¢,Vm € R(n), i.e.,
there are no co-tier interference constraints among nodes in R(n). Note that now due to cross-tier
interference, the graph H,, is made up disjoint sub-graphs. Each sub-graph corresponding to m € R(n)
is made up of an edge connecting m and H,,,. Due to this special structure, we have the following

lemma, which simplifies the evaluation of y(H|[n]).
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Lemma 4.5.1. Suppose 1.(m) = ¢,Ym € R(n), then

Y(Hin]) = max (x(m) +y(H]m]) (4.13)

Proof. 1t follows from Theorem 4.4.4 that y(H|[n]) is the solution of LP (4.12). LP (4.12) corresponds
to the minimum resource allocation on graph H,,, with load 7(m) on node m and y(H[m]) on node
H,, for each m € R(n), such that same RB cannot be allocated to nodes joined by an edge. Let
A 1= MaXper(n)(T(m) + y(H[m])).

Consider a BS m € R(n). Since BS m and H,, are connected by an edge in H,,, they cannot use the
same RB. Hence, y(H[n]) > t(m) + y(H[m]). Therefore, y(H[n]) > A.

We now provide a feasible allocation for H, using A RBs. Note that graph H, is made of
independent subgraphs of {m, H,,} pairs. Allocate the same A RBs to every {m, H,,} pair, and out of
which m can get 7(m) RBs and H,, can get a separate y(H[m]) RBS. Therefore, A > y(H|[n]). O

The main idea behind the proof of Lemma 4.5.1 is the following. Given I.(m) = ¢,Ym € R(n),
the graph H,, is composed of disjoint sub-graphs of {m, H,,} pairs. Hence, the resource can be re-used
in each sub-network, i.e., {m, H,,} pair. The resource allocation within each sub-network can be done
independently (in parallel). The minimum clearing resource allocation for the graph H, equals the
maximum among the sub-graphs.

The ideas here can be generalized to cases where the disjoint sub-graphs are not {m, H,,} pairs.
For example, suppose that the graph H,, is composed of two disjoint graphs, G| and G;. The resource
can be re-used in each of sub-graphs G| and G», and the resource allocation within each graph G
and G, can still be done independently. The minimum clearing resource allocation for the graph H,
equals the maximum among the clearing times for G, G,.

In the following, we consider a more complex topology which has an underlying tree structure.
We will show that a greedy resource allocation scheme (with linear complexity in number of nodes)
is optimal for this topology. First, we introduce necessary terminology. For the sake of convenience,
let 7(H,,) := y(H[m]) for the auxiliary nodes {H,, }ner(n) in graph H,. In this section, we will use 7(-)
to represent the load of a node, (for both a BS node and an auxiliary node). Further, we consider an

ordered set of RBs labelled by {1,2,...} for resource allocation.
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4.5.1 Co-tier graph

nq N2 3 714
n1 %) ns N4
[ o ———© L J
Hnl an H7L3 H7L4
(a) Example network for H, (b) Hf corresponding to H, in Fig-
ure. 4.13(a)

Figure 4.13: Illustration showing H, and the corresponding H2.

Consider the induced sub-graph H? of H, with the vertex set R(n). The vertex set of graph H?
is the set of co-tier BSs R(n) (i.e., children of BS n). For the edges of H?, each BS m € R(n) is
connected to each BS in I.(m) c R(n), i.e, each BS m is connected to the co-tier interfering BSs. For
an example, see Figure. 4.13

In this section, we will show that when the graph HZ is a tree, a greedy resource allocation
algorithm is optimal. First, we introduce the necessary terminology.

We provide the following definition of a feasible resource allocation.

Definition 4.5.1. Let {1,...,T} denote the set of RBs used for allocation, where T is a positive integer.
A feasible resource allocation A on a graph G’ € {H, },cv is a mapping from the set of nodes of G’

(say V') to the power set of {1,...,T}, i.e., A: V' — 2T} satisfying the following properties

1. A(m) C {1,...,T} is the set of RBs allocated to node m, such that |A(m)| > tv(m) for each

m € V', where |.| denotes the cardinality of a set.
2. JA(t) is a independent set of G’ for each t € {1,...T}, where Jx(t) ;= {m € V' : t € A(m)}.
We refer to T as the length of the feasible allocation A.

Under a feasible resource allocation A, a set A(m) of RBs is allocated to each node m € V’. Each
node m gets at least 7(m) RBs, since |A(m)| > 7(m). Any RB in {1,...,T} cannot be allocated to
two connected nodes in V’, under a feasible allocation, which follows from the condition that Jx(?) is

an independent set. Note that a feasible resource allocation of graph H, can be constructed using a
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(a) Example allocation for H,,. The loads are given (b) A feasible resource allocation for the
by the red numbers next to each node example in Figure. 4.14(a). The RBs allo-

cated is represented by the set of RBs next

to each node

Figure 4.14: Feasible Resource allocation. The loads are given in Figure. 4.14(a) and the allocation
is given in Figure. 4.14(b). Here, the set of {1,2,3,4} RBs are used for allocation, i.e., the length of

allocation is 4.

feasible solution of LP (4.12) and vice versa (since each RB is allocated to an independent set under
a feasible allocation and a feasible solution).

Consider the example given in Figure. 4.14. Figure. 4.14(a) presents the loads on the nodes.
Figure. 4.14(b) shows a feasible resource allocation for this setup. Note that under the feasible
allocation RB 1 is allocated to nodes {n,n3}, which is a maximal independent set of H,. Similarly,
RB 2 is allocated to maximal independent set {n, H,,, H,, }. RB 3 is allocated to maximal independent
set {H,, }?zr RB 4 is allocated to maximal independent set {n;,n4}. Hence, a feasible solution of LP
(4.12) can be constructed using these maximal independent sets. Here, the length of allocation (i.e.,
number of RBs used for allocation) is equal to the objective value of LP (4.12). A similar process
(in reverse) can be applied to construct a feasible resource allocation from a feasible solution of LP

(4.12).

Definition 4.5.2. An optimal resource allocation A is a feasible resource allocation for which the

length of allocation equals the value of the minimum resource clearing LP (4.12).

It can be noted that an optimal resource allocation of graph H,, can be constructed using an optimal

solution of LP (4.12) and vice versa.

Definition 4.5.3. A clique C of a graph G’ is a set of nodes of graph G’ such that either C is a singleton

set or a set with at least two nodes such that each node n in C is connected to all the other nodes

C — {n}.



120 Distributed Resource Allocation and Flow control Algorithms for k-tier HetNets

Note that since every two nodes in a clique C are connected, no two nodes in C can be allocated in the
same RB. It follows that at least ), 7(m) RBs are required for a feasible resource allocation. Hence,
Y mec T(m) provides a lower bound to the value of the minimum clearing LP (4.12) and the length of a
feasible resource allocation. Let C denote the set of all the cliques, and 77* := maxcec Xipmec T(M).
It follows that 75** provides a lower bound to the value of the minimum clearing LP (4.12) and the
length of a feasible allocation. e.g., In Figure. 4.14(a), the set of nodes {n, H,,,n2} form a clique.
Also, note that at least 4 RBs are required to allocate to the nodes in this clique, which provides a
lower bound on the length of a feasible resource allocation.

In the following, we will show that when the graph H5 is a tree, the greedy algorithm (given in
Algorithm 5) uses exactly 77** RBs and provides a feasible resource allocation for H,. It follows that

that the algorithm is optimal (since the lower bound given by the cliques is tight).

4.5.2 Greedy Allocation Algorithm

Firstly, we suppose that the graph H5 is a tree. We now introduce the necessary terminology and
notation. Let H2"" denote the tree HP rooted at a node m € HB. The choice of m is arbitrary. Let
n(p) denote the parent of a node p in the graph H2™. There are two types of cliques in graph H,,
corresponding to a node p € R(n), 1) Clgl), 2) CI(JZ). These are defined in the following.

For p € R(n) — {m}, define

W {n(p), Hy(p),p}  if 7(p) is not a leaf node in G
G, = 4.14)
{n(p),p} otherwise, i.e., Hy(,) does not exist.
) {n(p),p,H,} if pisnot aleaf node in G
C, =1 (4.15)
{n(p),p} otherwise, i.e., H, does not exist.

Figure. 4.15(a) shows the rooted tree H,f " for the network H,, in Figure. 4.13(a). We take p to be
n; for illustration. Figure 4.15(b) shows the cliques CI(,I) and C},z) for this example. It is straightforwad
that C 1(71) and Cl(,z) are cliques of the graph H,.

For a node p € HE™ let d(p) denote the number of nodes in the path from p to the root m,
including m and p. We refer to d'(p) as the depth of node p. For example in Figure. 4.15(a),

the depth of nodes nj,n3 is 2, and for n4, the depth is 3. With a slight abuse of notation, let
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n2
ni ns3
Uz
(a) Rooted tree H,lf "2 for the (b) Figure illustrating cliques C[(,l) and Cl(,z) of graph
example in Figure. 4.13(a). H,. Here, we take p to be n;

Figure 4.15: Illustration of cliques of H,,.

d(HP™) := max

perBm d"(p) be the depth of the tree Hf M Let V; denote the set of nodes which are

at depth i, i.e., V; is the set of nodes p € Hf " such that d”(p) = i. We present the greedy resource
allocation algorithm (in Algorithm 5) for graph H,, given the tree HE™,

: Q m(p)

B
"

©¢ o ¢ o o
Hp

Figure 4.16: Illustration showing the connected nodes of p and H), during an iteration of Algorithm 5.
Here, the links in Hf " are shown using solid lines, and the links which are in H,, but not Hf M are
shown using dotted lines. Both the solid and dotted lines represent interference constraints. Note that
p is connected to {7(p), Hy(,), Hp} using solid or dotted lines, and H,, is connected to p,n(p) using

solid or dotted lines.

Algorithm 5 works as follows. We start at the root node m of tree Hf " and work our way down

the tree. The resource allocation for the root m and auxiliary node H,, is done in step 1 and step 2 of
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Algorithm 5. During iteration Z, the algorithms considers the nodes V; at depth i in H2™. Note that in
graph H,f " a node p is connected to only its parent 7(p) and its children. We will denote the set of
children of node p in Hf by X, :={p € Hf " n(p’) = p}. Consequently, in graph H,, p is only
connected to node H,, and both the nodes {q, H,}, for each g € {n(p)} U X,,. Note that the children
X, C V41 are atdepthi + 1, and hence the allocation for these nodes (and the corresponding auxiliary
H nodes) is performed in a subsequent iteration. Hence, at step 7 of Algorithm 5, the allocation is
available (i.e., done during a previous iteration) only for {n(p), Hy(,} (among the connected nodes).
An illustration is given in Figure. 4.16. At step 7 of Algorithm 5, the algorithm avoids the RBs
occupied by {7 (p), Hx(p)} and allocates from the unoccupied RBs. Since |A*(g)| = |t(g)|, (i.e, each
node g is allocated exactly 7(g) RBs for g € {n(p), Hy(,)}), it follows that there are at least 7(p) RBs
in the set {1,.. "qucﬁ,“ (q)} — qu{ﬂ@)’Hn(m} A*(q) at step 7 of Algorithm 5.

Similar arguments also apply to allocation for H,. For H), the allocation is done from the set
{1,..., Zq€ c? (@)} — Ugetr(p)py A (@), at step 9 of Algorithm 5. Note that at each step the allocation
uses RBs with in the set {1,...,72*"}. In Lemma 4.5.2, we show that this property implies that A* is
an optimal resource allocation.

An example for allocation under Algorithm 5 is given in Figure. 4.17. Figure. 4.17(a) shows the
loads on various nodes in the graph H,. In Figure. 4.17(b), initialization of allocation (i.e., step 1 and
step 3) for nodes ny, H,, is given. The blue colored set is the resource block allocation for n, and red
colored set is the resource block allocation for H,,. For i = 2 in Algorithm 5, Vo = {n,n3}. The
allocation here is shown in Figure. 4.17(c). For node n;, the RBs {3,4} are allocated to n; in step
7 and the RB {2} is allocated to H,, in step 9 of Algorithm 5. For i = 3, the allocation is given in
Figure. 4.17(d)

Lemma 4.5.2. Given that H? is a tree, Algorithm 5 produces an optimal allocation on tree H,,.

Proof. Firstly, we will show that A* is a feasible resource allocation. Since H2 is a tree, each node p
in the rooted tree Hf " is only connected to its parent and its children (i.e., I.(p) is the set of parent and
children of p in tree Hf ™). Note that the allocation in Algorithm 5 happens top-down (on tree Hf )
starting from the root m and auxiliary node H,, (in step 1 and step 2 of Algorithm 5 respectively).
Hence at step 7 of Algorithm 5, the allocation for the parent 7(p) and the auxiliary node Hy(,) must

have been completed in a previous iteration, and the allocation children of p (and its auxiliary nodes)
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Algorithm 5 Allocation algorithm given a rooted tree HE"
1: Consider a ordered set of RBs labelled using N.

2: A*(m) :={1,...7(m)}. // Tnitialization. RB allocation for the root m.
3. if m is not a leaf node of G then /i.e., if H,, exists,
4: AN(Hy) :={t(m)+1,...,7(m) + 7(H,)} //' RB allocation for H,y,.
5: end if

6: fori =2 to d(H?™) do

7: for p € V; do /' V; is the set of nodes at depth i in tree HZ"™.
8: A*(p) := the smallest 7(p) RBs from the set {1, .. .,qucl()l) 7(q9)} — qu{ﬂ(p)’Hﬂ(p)} A*(q).
/I Allocation for p. There are at least 7(p) RBs in the considered set since |A(g)| = 7(g) for g € {n(p), Hx(p)}.
9: if p is not a leaf node of G then /lie., if Hp exists,
10: A*(H,) := the smallest 7(H,,) RBs from the set {1,.. . ., quC,(f) (@)} —Uger(prpy A" (@)
/I Allocation for H,,. There are at least 7(H,,) RBs in the considered set since |A(g)| = 7(q) for g € {n(p), p}.
11: end if
12: end for
13: end for
return A*

is not yet complete (and will be done in a subsequent iteration).

Hence at step 7 of Algorithm 5, the only RBs that are occupied by connected nodes (in graph H,,),
1.(p),{Hy}4el.(p) are the RBs allocated to the parent 7(p) and node Hy,), i.e., qu{ﬂ(p)’Hﬂ(p)} A*(q).
Since |A*(q)| = 7(q),Yq € {n(p),Hz)} (because each node g is allocated exactly 7(g) RBs un-
der the algorithm), it follows that there are at least 7(p) RBs in the set {1,.. .,qucl()) (q)} -
Ugetno)Hap) A*(q). (We note that there are exactly 7(p) RBs in the set, if Ugetn(o)Hapy) A*(q) C
{1,.. .,qucl()l) 7(g)}. Otherwise, if A*(q) € {1,.. .,qucl()l) 7(q)} for some g € {n(p), Hy(p)}, then
there are more than 7(p) free RBs.)

Similarly, H,, is connected to the nodes in /.(p) ([ J{p}. At step 8 of Algorithm 5, the allocation
for only p,n(p) (among the connected nodes) has been completed in a previous iteration. Since
|A*(q)| = 7(q),Yq € {n(p), p} (because each node ¢ is allocated exactly 7(¢) RBs under the algorithm),
it follows that there are at least 7(H,) RBs in the set {1,. . "quC,(f) (@)} = Ugeta(ppy A (@).

Hence, each node p gets exactly 7(p) RBs which do not overlap with the allocation of the parent
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!

(a) Loads on graph H, (b) Initialization. Here, n; is the root in tree H,lf o

Hn{f} H 522}

(¢) Allocation fori = 2. Here, V5 = {n,n3} (d) Allocation for i = 3. Here, V5 = {n4}

Figure 4.17: Figure illustrating resource allocation under Algorithm 5.

n(p) or node Hy,). And, each node H), gets 7(p) RBs which do not overlap with the allocation
of {p,n(p)}. Since, this is true for every node p, it follows that condition 1 and condition 2 of
Definition 4.5.1 are satisfied. Hence, A* is a feasible resource allocation.

We will now show that A* is an optimal allocation. It follows from step 1, step 3, step
7 and step 8 of Algorithm 5 that the allocated RBs lie in the set {1,.. .,T'C“ax} (since Tg‘ax >
max{zqecl(}) T(q{),zq€ c® 7(g)} for each p € R(n)). Hence, the length of allocation of A* is less

than or equal to Tg‘ax. Here,

max ., __
S e, 2, 70
quI(,l)
Since Cl(,l) and C,(,Z) are cliques of graph H,, it follows that length of any feasible allocation must be

greater than or equal to max{zq€ v 7(g), Zq ec® 7(g) (because no two nodes in a clique set can be

allocated in the same RB). Hence, the length of any feasible resource allocation must be greater than
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or equal to 75**. Therefore, A* has the minimum length among all the feasible resource allocations.

Hence, it follows that A* is optimal. O]

4.6 Theoretical Results

Proof of Theorem 4.4.4. Let a(H,) denote the optimal value of LP (4.12) for H,. We complete the

proof in two parts. Firstly, we show that a(H,) > y(H|[n]), and next we show that a(H,,) < y(H|[n]).

D a(H,) = y(H[n])

We will now propose a feasible solution to LP (4.4) for H[n] using the solution of LP (4.12) for
H,.

Note that a(H,) is the optimal value of LP (4.12). Consider the allocation corresponding to the
solution of LP (4.12). Under the solution, a(H,) RBs are used to allocate 7(m) RBs to each BS
m € R(n) and y(H[m]) RBs to each auxiliary node H,,. For the BS nodes m € R(n), the allocated
RBs do not overlap with any of RBs allocated to the co-tier interfering BSs 1.(m) (since the allocation
happens over independent sets of graph H,). Hence, the BS nodes m € R(n) can use the allocated RBs
without the co-tier interference. In the following paragraph, we will show that cross-tier constraints
are also not violated under proposed solution.

Since y(H[m]) is defined to be the optimal value of LP (4.4), the y(H[m]) RBs allocated to
auxiliary node H,, are sufficient for allocating to the BSs in H[m] for each m € R(n). We will now
show that the RBs allocated to H[m] do not overlap with any interfering BSs in H[n]. Among the BSs
in R(n), note that BSs p € I.(m) C R(n) are the ones which cause cross-tier interference to BSs in
H[m]. Since the allocation happens over independent sets of graph H,, the y(H|[m]) RBs allocated to
auxiliary node H,, do not overlap with the RBs allocated to interfering BSs p € I.(m). For the BSs in
{H[pl} per(n)-{m}» it follows from Lemma 4.4.1 1 that any BS in H[m] does not have a interfering BS in
H{p]. Hence, no interference constraints are violated under the proposed RB allocation corresponding

to the solution of LP (4.12).

2) a(H,) < y(H[n])

To show «(H,) < y(H[n]), we make use of the mapping ¥ : Syp,) — Ju, defined in Lemma 4.4.3
(which uses (4.10) in Lemma 4.4.2).
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It follows from point 2) of Lemma 4.4.3 that Sy, can be expressed as a union of disjoint sets
given by {S,},e g, - Hence, LP (4.4) for H[n] can be written as following LP (4.16)
min Z Z fs
JeJu, S€S;

S.t.

Z fs = 1(m),Ym € R(n)
J:meJ SeS;

>, fs27(p).Vp € Hlml;m € R(n)
SeSH(n):PES

fs = 0,VS € S;,VJ € Jn, (4.16)

Now consider the following LP (4.17)
min Z Z fs
JeTn, S€S;

S.t.

Z Z fs > 17(m),Ym € R(n);

J:meJ SeSy

D03 fs 2 y(H[m]).Ym € R(n);

J:HpeJ SeS;

Z Js20.YJ € Jn, (4.17)

SeSy

Let f = [fslsesy,,- Note that any f € R'f” il satisfying fs > 0,VS € Sy also satisfies
ZSESJ fS 2 OaVJ € an-
Since y(H[m]) is defined to be the optimal value of LP (4.4) for H[m], it follows that any feasible

. SHin . o
solution f € RL Hol atisfying

>, fs=(p)Vp e Hm]
SeSHn):peS
must also satisfy ) ¢c SHin] fs = y(H[m]). From Lemma 4.4.3, this is equivalent to
> fs = y(H[m))
J:H,€J SeS;
Hence, any feasible solution of LP (4.16) (which is equivalent to LP (4.4)) is a feasible solution
of LP (4.17). Therefore, the optimal value of LP (4.17) must be no larger than optimal value of LP



4.6 Theoretical Results 127

(4.16), which equals y(H[n]). Note that replacing }.scs, fs with f; in LP (4.17), immediately yields
LP (4.12), i.e., they are equivalent. Hence, a(H,) < y(H|[n]). ]
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Chapter 5

Greedy iterative solution to the minimum

clearing time problem

5.1 Introduction

BS1

\ BS 2
“._ Unacceptable Uy

" interference ..z~
U1 Uz .

Figure 5.1: Example Network. The solid blue lines are wireless links and the red dotted lines represent

the interference (or contention).

Consider the minimum clearing time problem for the following general setup. We consider a set
of users {ui}f\i | Wwith loads {T(Ltl')}l.l\; . C NV. Each user u; has to be allocated 7(u;) slots. There are
constraints on which users can be scheduled on the same slot defined as follows. A user u; cannot be
scheduled in the same slot as any of the users in the set /(u;) C {u; }i]\; ,- An example of a network which
can be modelled by this setup is given in Figure. 5.1. Here, the users are wireless links {u, u, u3,u4}.

Each BS can schedule one link at a time. There are also constraints due to the interference (shown
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using red dotted lines). In Figure. 5.1, a transmission from BS 1 results in too much interference at
the receiver of u3, and a transmission from BS 2 results in too much interference at the receiver of u,.
Hence, in this example, (1) = {u,u3}, I(uz) = {uy,us,us}, [(u3) = {uy,uz,us}, and I(uy) = {us,uz}.

We consider the minimum clearing time problem for this setup as the minimum number of slots
required to satisfy the loads 7(u;) for each user u; such that the scheduling constraints are not violated
in any slot. We can formulate the minimum clearing time problem (using the notion of feasible sets

as was done in the previous chapters) as LP (5.1).
Definition 5.1.1. A feasible set is a set of users S C {ui}f\il such thatVi € {1,.. . N}L 1(u;) (S = ¢.

Definition 5.1.2. A maximal feasible set is a feasible set that is not a subset of any other feasible set.

min Z fs

SeS

S.t.

> fszt(w)ie (1. N}

S:u;eS

fs>0VSeS (5.1)

where S is the set of all maximal feasible sets, and fs is the number of slots allocated to a maximal
feasible set S.

In the previous chapters, we have provided efficient solutions to the minimum clearing problem for
various networks with an underlying structure. The proposed algorithms (in those chapters) required
the presence of a central root node (e.g., macro M in Chapter 2, and root node r in Chapter 4), and
forward-backward message passing to the central node. In this chapter, we present a more decentralized
greedy allocation algorithm which does not require the presence of a root node for implementation.
Hence, the algorithm can be implemented in more general topologies (i.e., arbitrary I(u;) relations),
and has a wider applicability. The proposed algorithm only requires local communication of u; with
the nodes in 7(u;).

The algorithm can be described as a book ahead slot reservation system. Under the algorithm, a
user u; (updating at time ¢) is allowed to reserve 7(u;) future slots (i.e., > t). The choice of slots (i.e.,

reserved by u;) is made so that they do not overlap with reserved slots of users in /(x;). Such slot
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reservation schemes for multiple access in wireless networks were considered for Packet Reservation

Multiple Access in the literature [65].

We can consider the scheme as a network wide round robin scheduling algorithm, as will be
clear when we describe the algorithm in section 5.2. The proposed greedy algorithm produces
feasible solutions of LP (5.1) in general. However, we present the following two topologies where the
algorithm converges to the optimal solution LP (5.1), in linear time. These are not the only topologies
where the algorithm will be optimal. We have not characterized when the algorithm is optimal in this
chapter. It is a topic for future research. The following topologies are simply two examples for which

we will prove optimality in this chapter.

5.1.1 Topology 1

We consider a tree G; = (V,E), where V = {u,-}l.j\; , represents the set of users and E represents the
set of edges. Each user u; € V has a load of 7(1;) € N slots. The conflict constraints are modelled as
follows. A user u; and u; cannot be scheduled in the same slot if they are joined by an edge in the tree

G. Figure. 5.2 gives an example with 13 users and 12 edges.

U

UQ U3 u4 U5

Ug U7 ug U9 U0  uUpr U112 U3

Figure 5.2: Example of Topology 1.

This topology can be used to model various wireless networks, e.g., 1) a tree network under
primary interference constraints, 2) a wireless broadcast network where information is disseminated

from root to the leaves.
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ns ng nrg nNg Ng MNig ny1 N2

Figure 5.3: Example of Topology 2.

5.1.2 Topology 2

We consider a tree of links denoted by G, = (V, L), where each link corresponds to a user, e.g.,
see Figure. 5.3. Consider a load of 7(u;) € N slots on each user ; € L. The conflict constraints are
modelled as follows. Two links sharing a common node cannot be scheduled together in any slots. Let
I(u;) denotes the set of users that interfere with user u;, e.g., In Figure. 5.3, I(u) = {up, u3, u4, us, ug}.

This topology can be used to model a wireless network with relays under half-duplex constraints.
For example, consider Figure 5.3. It can be used to represent the following relay network. Let ng be
a BS with wired backhaul connection, and nodes {ns, . ..,n2} represent the mobile user equipments
(UEs). The nodes {nj,...,ns4} are relay BSs which forward the data from ng to the UEs. The links
(which we call users) in Figure 5.3 correspond to the wireless links that occur in this network. A
possible application of this setup is that of a mmWave IAB network with one RF chain.

Given the hardness of wireless scheduling in general, greedy approaches to scheduling have been
considered in the literature. The Max-weight scheduling algorithm is well known to be throughput
optimal [1]. However, the implementation involves finding the maximum weighted schedule, which is
NP hard in general [1]. Several works in the literature have considered greedy approximations to the
problem of finding maximum weighted schedule. The Greedy Maximal Scheduling (GMS) algorithms
proposed in [66—69] construct a maximal schedule greedily in polynomial time. GMS was shown to
be optimal in networks with special structure (e.g., tree networks under the K-hop interference model)
[67].

Similar to how GMS is a greedy approximation to find the maximum weighted schedule, the
algorithm that we provide in this chapter is a greedy method to solve the minimum clearing time

problem. The algorithm only requires local information and decisions are made distributedly, unlike
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in GMS where global knowledge is needed to find the greedy schedule. As mentioned earlier, the
algorithm produces feasible solutions of LP (5.1) in general. The algorithm has a monotonic behaviour
in the sense that the clearing time can never increase as time progresses. We will show convergence

to the minimum clearing time in the considered topologies.

5.2 Algorithm

Let us consider an example with 7 users. Let the loads [7(u;)] l’i , be [3,4,2,3,4,2,2]. The constraints
are given by I(u;) = {uj—1,u;+1} fori =2,...,6,and I(u;) = {uz}, I(u7) = {ue}. For this example, we
present a feasible allocation at time 7, in Table 5.1, where X marks an allocated slot. The algorithm
generates feasible allocations of the kind given in Table 5.1. Note that each column in Table 5.1 forms
a feasible set. e.g., {uy,uq,u7} is the feasible set in slot 7 + 1, and {u3, us} is the feasible set in slot # + 5.

Before describing the algorithm, we formalize the definition of a feasible allocation and introduce the

necessary notation.

Table 5.1: Feasible Allocation.

slot || t+1 | t+2|t+3|t+4|t+5|t+6|t+7|t+8|1t+9

uj X X X

uy X X X X

us X X

us X X X X

Ueg X X

uy X X

Definition 5.2.1. A feasible allocation X(t) (at time t) assigns a subset X;(t) C {t,...t + K — 1} (for

some positive integer K) of slots to each user u; fori = {1,...,N}, such that

1. |Xi(t)| = t(u;) for each i € {1,...,N}, where |.| is the cardinality of a set.
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2. Xi(l)ﬂXj(t) = ¢,\7’uj € I(u;), i €{l,...,N}.
3UN Xt ={t,...t +K -1}
We refer to K as the length of allocation for X (t).

Note that under a feasible allocation, (1) each user u; gets 7(u;) slots (since |X;(¢)| = 7(u;)). (2) No
two conflicting users are scheduled in the same slot (since X;(¢) () X;(t) = ¢,Vu; € I(u;), i.e., there
are no overlapping slots between conflicting users). Hence, each column in Table 5.1 is occupied
by a feasible set of users. (3) Each slotin {¢,...,# + K — 1} is allocated to at least one user (since

NoX(t)={t,...t + K- 1}).

Note that given a feasible allocation, a feasible solution to LP (5.1) can be constructed as follows.
For the considered example, fs = 2 for S = {u,uq,u7} since slots ¢ + 1,7 + 2 are occupied by the
maximal feasible set {u,uq,u7}. fs = 1for S = {uy,u4,ue} since slot ¢ + 3 is occupied by {uy, ug, ug}.
Slot ¢ + 4 is occupied by {u3, ug}, which is a feasible set but not a maximal feasible set. It can be made
maximal by adding an extra user {u; }. Hence, fs = 1 for S = {uy, u3,us} (since slot z + 4 are occupied
by {us,ue} which is a subset of the maximal feasible set {u,us,ug}). fs = 1for S = {uy,us,us,uz},
since ¢ + 5 is occupied by {u3,us} which is a subset of maximal feasible set {u,u3,us,u7}. fs =4 for
S = {up,us,u7}, since slots ¢ + 6,1 + 7,¢ + 8 are occupied by {up,us} and ¢ + 9 is occupied by uy, both
of which are subsets of maximal feasible set {u, us,u7}.

Under the above constructed feasible solution of LP (5.1), the objective value equals the length
of allocation, which is 9 for this example. Later in the chapter, we define a feasible allocation to be
optimal if its length equals the optimal value of LP (5.1). We will present an algorithm (Algorithm 7)
that generates optimal allocations for the considered topologies.

later show that for the considered topologies, the algorithm generates optimal allocations.

Definition 5.2.2. An optimal allocation X*(t) is a feasible allocation with length equal to the optimal
value of LP (5.1).

We will now describe the algorithm. It has two components, 1) Initialization and 2) Update
rule. In initialization, we start with a feasible allocation satisfying certain properties (provided in the
following). Once the initial allocation is provided, the update rule provides the slot allocations of each
user u; at each update. Given a initial allocation, the future allocations are fully determined by the
update rule. The algorithm provides a map from {1,. .., o0} to the set of feasible sets, i.e., in each slot

t, a feasible set is scheduled.
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5.2.1 Initialization

An initial allocation is a feasible allocation of length | X(0)| slots such that allocation X;(0) of each
user u; is made up of contiguous slots for eachi = 1,..., N. Consider the same example with 7 users,
with loads [3,4,2,3,4,2,2]. Suppose I(u;) = {uj—1,ui+1} fori = 2,...,6, and I(uy) = {uz},[(u7) =
{ug}. We now present a valid initial allocation for this setup in the following Table 5.2. Here, the slots

allocated to a user u; are marked with X in the corresponding row.

Table 5.2: Initial Allocation.

slot | 1234 |/5]6|7[8]9
up || XXX

u XX | XX
us3 X | X

ug || X | X | X

us XXX X
Ug X | X

u; || X | X

We present a simple rule to generate the initial allocations in Algorithm 6.

Algorithm 6 Initial Allocation
: X;(0) « {0} fori=1,...,N. // Tnitialization

—

[\

. Let {O'(i)}f\i , be an arbitrary permutation on {1,... ,N}.
3: fori=1to N do
4: Xy — '+ 1., +7(us;))}, where t’ := max{Uje,(ug(i)) X;(0)}

5: end for

5.2.2 Update Rule

We present the update rule in Algorithm 7. It can be described as follows. The slots allocated to

users expire as the time progresses and new slots have to be allocated. For example, in Table 5.2, u; is
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allocated slots {1,2,3}. Hence, after slot 3, #; will have no slots remaining from the initial allocation.
In the following Algorithm 7, T;(¢) denotes the allocated slots (at time ¢) which are greater than or
equal to ¢ of user ;. In Table 5.2, T1(1) = {1,2,3} and T1(2) = {2,3}. When all the allocated slots
expire, i.e., when T;(¢) — {t} = ¢, the allocation for user u; is updated. During the update, a new set of
slots T;(¢ + 1) is allocated to user u; in step 10 of Algorithm 7. The new allocation is chosen greedily
as the earliest available contiguous block of slots which are not occupied by the conflicting users in

the set I(u;).

Algorithm 7 Update Rule
1. t=1

2: fori=1,... Ndo
30 Ti(1) = Xi(0)
4: end for

5: whilez > 1 do

6: fori=1,...N do

7: if 7;(¢t) — {t} # ¢ then

8: Ti(t + 1) =Ti(r) - {t}

9: else // In this case, ¢ is an update slot for user u;.
10: fi®) =inf{keN: k>t{k,....k+71(u;)—- 1} Uj:ujel(ui) Ti(t) = ¢} /I We are

searching for the earliest non-conflicted block of slots for user u; starting from slot ¢ + 1

11: Ti(t+ 1) :={fi(0),..., fi(t)+1(u;) — 1}
12: end if
13: end for
14: te—t+1

15: end while

LetT(t) = {Tl-(t)}l.li | denote the allocation state at time 7. For the considered example in Table 5.2,
Table 5.3 shows the allocation state at time # = 1. Table 5.4 shows the allocation state at time ¢ = 2.
Table 5.5 shows the allocation state at time ¢ = 3. Note that 7;(3) — {3} = ¢ fori = 1,4 in Table 5.5,
hence ¢ = 3 is an update slot for users uy,us. The allocation state at # = 4 is shown in Table 5.6. As

can be seen, u; and u4 have been allocated new slots {10, 11,12} and {9, 10, 11} respectively.
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Table 5.3: Allocation state at r = 1. Table 5.4: Allocation state at r = 2.
slot | 1234 /5]6|7[8]9 slot | 23|14 ]5]|6[7|8|9
u || X | XX up || X | X
up XXX [X up XXX X
u3 X | X u3 X | X
uy || X | X[ X ug || X | X
us X[ XXX us XX |[X[X
Uus X | X Ug X | X
u; || X | X u7 || X
Table 5.5: Allocation state at r = 3. Table 5.6: Allocation state at ¢t = 4.
slot | 3145|6789 slot || 4 | 5|6 [7|8|9|1011]12
up || X uj X|X|X
up XXX |X up XXX [X
us3 X | X uy || X | X
Ug X Uy X| X | X
us XXX [X us XXX [X
ug || X | X ug || X
uz X | X uy X | X

5.3 Performance and Optimality

It can be observed that a feasible allocation X(¢) generated by the Algorithm can be constructed at
any time ¢ > | X(0)| by choosing a K large enough such that in the interval {t — K +1, ...}, each user y;
is allocated at least 7(i;) slots in the interval. For the considered example, following Table 5.7 shows
all the allocated slots in the interval {1,...,17}. Suppose we want to construct a feasible allocation
from the algorithm at time ¢ = 14. Note that by choosing K = 8 each user u; has at least 7(u;) slots
in the interval {7,. .., 14}, and hence a feasible allocation can be constructed from the corresponding
columns of Table 5.7. In this section, we formalize the concept of choosing K to construct feasible

allocations from Algorithm 7.
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Table 5.7: Allocation table showing all the allocated slots until r = 17.

slot || 1|23 /4567891011 12|13 |14 15|16 |17
u || X | X[ X X | XX

u XXX X XX | X | X
u3 XX X | X

ug || X | X | X X| X | X X | X
us X[ XXX X1 X[ X | X

Ueg X | X X | X X | X
u; || X | X X[ XXX XX | X | X

We also provide the criterion for optimality of Algorithm 7 i.e., when the constructed feasible
allocations are optimal. We explain the key intuition as follows. Recall that a feasible solution of LP
(5.1) can be constructed using a feasible allocation, and the length of allocation equals the objective
value of LP (5.1) under the constructed solution. For the feasible allocation formed using the columns
in interval {r — K + 1,...,t}, the objective value equals K. We consider the allocation to be optimal
if K equals the optimal value of LP (5.1).

First, we introduce the notation necessary for analysis. We define «;(¢) to be the earliest update

slot of u; which is greater than or equal to ¢ as follows.
a;(r) := max(Ti(r)) (5.2)

Recall from Algorithm 7 that for an update slot ¢, T;(z) = {t}. Hence, if ¢ is an update slot of u;,
then ;(t) = t. Otherwise, i.e., if 7 is not an update slot of u;, then a;(¢) > ¢.

For ¢ > | X;(0)|, we define B;(¢), the latest update slot of u; which is less than ¢ as follows
Bi(t) :=sup{k <t:ai(k) =k} (5.3)
Definition 5.3.1. Fort > |X;(0)|, we define inter-update gap of user u; as g;(t) := a;(t) — Bi(t).

Lemma 5.3.1. Givent > |X;(0)|, under Algorithm 7, each user u; gets at least T(u;) allocated slots in

the interval {t — g;(t)+ 1,...,t}, fori =1,...,N.

Proof. The proof is given in section 5.8. U
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From Lemma 5.3.1, each user u; gets allocated exactly 7(u;) slots in the interval {r—g;(¢)+1,...,t}.
It may seem like g;(¢) can be used as a performance metric. However, note that 1) g;(¢) can be different
for different users u;, and 2) g;(¢) remains constant between updates ands changes its value abruptly
immediately after an update slot. Due to these two issues, it is problematic to use g;(¢) as a performance
metric. We use K(¢) (defined in the following) as the performance metric which we use to determine

optimality. K(t) satisfies a monotonicity property as given in Lemma 5.3.2.

Definition 5.3.2. We define K(t) to be the minimum interval length K € N such that each user u; is

allocated at least T(u;) slots in the interval {t — K + 1,. ..t} under Algorithm 7.
Note that it follows from Lemma 5.3.1 that
K@) < ml\zlilx gi(1), Vi > |X(0)] (5.4)
1=

The equality in (5.4) does not hold if there are at least 7(u;) slots for each i in the interval {r —

maxf\il gi(t)+2,...,1}.
Lemma 5.3.2. Under Algorithm 7, K(t + 1) < K(t), YVt > | X(0)|.

Proof. The proof is given in section 5.8. [

It follows from Lemma 5.3.2 that the allocations produced by the algorithm cannot increase in
length as time passes. This property is a general result of Algorithm 7 and applies independently
of the topology. Therefore, even though Algorithm 7 may only generate sub-optimal allocations for
certain topologies, the solution at any slot ¢ will be as good (in terms of objective value) as the
solution at previous slot # — 1. It follows that the asymptotic limit K(co) = lim,_,. K(#) exists. In
the asymptotic limit, either the algorithm converges to an optimal allocation, or it may cycle between
feasible allocations of a length K (o). This follows from there being only finite possibilities for feasible
allocations of a given length K(oo0). In the following, we define the criterion for optimality of the

algorithm.

Definition 5.3.3. The algorithm has converged to the optimal solution at time t if and only if K(t) =
2ses fg» where fg is the optimal solution of LP (5.1).
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5.4 Properties of the algorithm

The following sections will show the convergence of Algorithm 7 in the two considered topologies.
A common feature in these two topologies is that the cligue bound is tight for them. In this section, we
derive the necessary results regarding Algorithm 7 to show convergence in the considered topologies.

We first provide the necessary definitions.

Definition 5.4.1. A clique set C C {ui}i]\il is a set of users such that for any u; € C, I(u;) > C.
i.e., Every pair of users in a clique set conflict with each other.

Definition 5.4.2. A maximal clique set is a clique set that is not a subset of any other clique set.

Let C denote the set of all maximal clique sets, and 75%* := maxcec{X,,ec 7(ui)}. It is clear that
since no two users in a clique set C can be scheduled in the same slot, we need at least }, ¢ 7(1;)
slots for scheduling users in C. Hence, it follows that }.scs f¢ > 725, i.e., the minimum clearing
time can be bounded by the time to clear the cliques. We say the clique bound is tight if and only if

Sses fy = T3

We will show that for the two topologies considered in the following sections, there exists 7" such
that g;(r) < 75 for each user u;, V¢ > T. It follows from (5.4) that K(T') < 77**. It follows from
Lemma 5.3.1 that feasible allocations can be constructed by considering the interval {t—Tg“‘X+ 1,....,T}
forany r > T. The optimality of the allocations follows from the clique bound. Itis also then immediate
that the clique bound is tight for the considered topologies. Before proceeding further, we provide the
following two lemmas regarding Algorithm 7 which will be pivotal in establishing the optimality of

the algorithm for the topologies in the following sections.

Lemma 5.4.1. Suppose that t is an update slot of an user u; such that t > |X;(0)|. Then one of the

Jollowing conditions must hold
1. t — 7(u;) is an update slot for a user u; € I(u;)
2. t — 1(u;) is an update slot for user u;

For an example of Lemma 5.4.1, consider the update slot 12 of u; in Table 5.7. Here 7(u;) = 3. It

can be noted that slot 9 = 12 — 3 is an update slot of uy € I(uy).
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Proof of Lemma 5.4.1. Lett’ = B;(t), i.e., t’ is the latest update slot of u; before 7. In the Algorithm 7,
recall that fi(#') = inf{k e N: k > ', {k,... k+7(u;) = 1} N Ujesq, Tj(t") = ¢} is the first slot of the

conflict free block available to ;. We consider the following two cases.

Case 1:

Suppose fi(t') = t' + 1. During the update at ¢/,

{t'+1,...t'+T(u,~)}ﬂ U Ti(t') = ¢ (5.5)

jel(u;)
It follows that 7;(¢') = {t' + 1,...,t" + 7(4;)}, and that the next update slot r = ¢’ + 7(u;). This implies
t" =t — 7(u;). Therefore in this case, ¢’ = t — 7(u;) is an update slot for user u;. Statement 2) of

Lemma 5.4.1 holds in this case.

Case 2:

For the other case, suppose that fi(t’) > t" + 1. Hence, during the update at ¢/, f;(#') — 1 is a
slot occupied by a user (say u;) in I(u;). Observe that fi(t) + 7(y;) — 1 = t, which implies slot
fi(t') =1 =t —7(u;) is occupied by u; but not f;(¢’) (since it is occupied by ;). Hence, we can deduce
that fi(’) — 1 = t — 7(u;) is an update slot of user u;. Statement 1) of Lemma 5.4.1 holds in this

case. L]

The following Lemma 5.4.2 is the key result which will be used to establish the convergence in
the considered topologies. The statement of Lemma 5.4.2 says that if u; has a large gap (i.e, > 77%)

at time ¢, then there exists u; € I(u;) such that u; has a large gap at time ¢ — 7(y;).

Lemma 5.4.2. Suppose t is an update slot of user u; such that g;(t) > 75, and that t is sufficiently
large. Then there exists u; € I(u;) such that

a) t — v(u;) is an update slot of u;.

b) gt 7)) > T

c)t — t(u;) — v(u;) is not an update slot of u;

d) 3uy € I(u;) — {u;} such that t — v(u;) — 7(u;) is an update slot of uy.

Proof. The proof is given in Section 5.8. U
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For an illustration of Lemma 5.4.2, consider the example in Table 5.7. Here, Tg’ax = 7. During the
update slot 17 of u, the gap g2(17) = 17-9 = 8 > 77, It can be noted that, for a), 13 = 17 -7(uz) is
an update slot of user u3 € I(uz). For b), g3(13) = 13 -5 =8 > 77%. For¢), 11 = 17 = 7(u2) — 7(u3)
is not an update slot of uy. For d), 11 = 17 — 7(uy) — 7(u3) is an update slot of uy € I(u3) — {uz}.

The rest of the sections in the chapter will focus on establishing the convergence of Algoritm 7.We
present the intuition behind how Lemma 5.4.2 is applied to prove convergence in G in Topology 1.
We use proof by contradiction. Suppose there is a large gap for some u; at a sufficiently large time
t. (The meaning of sufficiently large will be made clear in the following section.) Lemma 5.4.2 can
be used to trace the large gap to a user u; € I(u;) at time ¢ — 7(u;). Repeating the argument again,
the large gap can be traced back to a user uy € I(u;) — {u;} at time ¢ — 7(u;) — 7(u;). Repeating this
argument several times, the large gap can be traced back to a user u,, (along the a path P;; connecting
nodes {u;,uj,ux, . ..,u;,uy,} with large gaps) at t > 0 such that u,, is a leaf node in G;. Applying
Lemma 5.4.2 for u,, will lead to a contradiction since I(u,,) — {u;} is an empty set.

The arguments in Topology 2 run along the same lines, albeit a bit more involved.

5.5 Convergence in Topology 1

We consider a tree G| = (V,E), where V = {u,-}l.’\; , represents the set of users and E represents the
set of edges. Each user u; € V has a load of 7(1;) € N slots. The conflict constraints are modelled as
follows. A user u; and u; cannot be scheduled in the same slot if they are joined by an edge in the tree

G. Figure. 5.4 gives an example with 13 users and 12 edges.

Uy

Ug uz7  ug U9 U0 up U112 U3

Figure 5.4: Example of Topology 1.

Let P C V denote the set of users (i.e., nodes) in a path connecting two nodes of tree G;. Let
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Tp = Y ,ep T(u), and P denote the set of all the paths of the tree. We provide an upper-bound on
convergence time of Algorithm 7 (to the optimal solution) in the following Lemma 5.5.1.

An example showing the convergence of the algorithm is provided in Figure. 5.5. The graph is
provided in Figure. 5.5(a) and the allocation is provided in Figure. 5.5(b). It can be noted that the
length of initial allocation is 3, and the clique bound 77** equals 2 for the considered example. The
algorithm converges after slot 9. It can be noted that g;(10) = 2 = Tglax, vVi=1,...,10.

Ug
slot | 1 |2 (3[4 (5|67 |89 10|11 |12
Us
u10 23] X X X X X
uy X X X X X
U7
o
u3 X X X X
@6 us || X X X X X
s us X X X X
Ug X X X X
U4
u; || X X X X
"3 ug X X X X
U2 Uy X X X
U1 uio X | X X X | X X
(a) Graph. (b) Convergence.

Figure 5.5: Converge of Algorithm 7 in G;. Figure. 5.5(b) presents the allocation from ¢ = 1 to
t = 12 for the example in Figure. 5.5(a). Here, 7(u;) = 1 for each 1 < i < 10. The black colored
X is used to represent the initial allocation for each u;. For each u;, the updated allocations (Xs) are

marked with colors red, blue, green and violet alternatively.

Lemma 5.5.1. For Algorithm 7 running on Gy, gi(t) < 75** for eachi = 1,...,N, ¥t > |X(0)| +

maXpep Tp.

Proof. Lets suppose not, and assume there exists a user u, and an update slot 7 such that g,(r) > 75

for some ¢ > |X(0)| + maxpep Tp. We use proof by contradiction in the following. We will apply

Lemma 5.4.2, for the users in the path from u, to a leaf node of G.
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Consider the rooted version of tree G, G| with root as node u,. Let c(k) denote a child of a node
k in the tree G7. For the sake of convenience, let c*(uy) = c(c(uy,)) denote a child of node c(u,). In
general, let ¢"(uy,) = c(¢™ (u,)) denote a child of node ¢! (uy,).

By applying a),b) of Lemma 5.4.2 for user u, at time 7, we have g.(,,)(f — 7(w;)) > 75 and
t — 7(uy) is an update slot of c(u,). Here, c(u,) is the u; in statement a) of Lemma 5.4.2. It also
follows from statement ¢) Lemma 5.4.2 that ¢ — 7(u,) — 7(c(u,)) is not an update slot of u,,.

For an illustration of the arguments here, consider the example given in Figure. 5.5. Note (from
Figure. 5.5(b)) that at the update slot ¢t = 9 of ug, g9(9) = 3 > 7o = 2. In this example, u, is ug
and c(u,) is ug. We note that time ¢ considered in this lemma (which provides an upper-bound for

convergence time) is greater than 13. In the example, convergence has occurred at time 10.

Now, by applying a), b) of Lemma 5.4.2 for user c(u,) at time t — 7(u,), we have

8e2(uy)(t = T(un) — (c(un))) > 75 (5.6)

for some child ¢?(u,) of c(u,), and t — 7(u,) — 7(c(u,)) is an update slot of ¢(u,). Here, c*(u,)
is the u; in statement a) of Lemma 5.4.2. It also follows from statement ¢) of Lemma 5.4.2 that
t —1(u,) — 21221 7(c!(u,)) is not an update slot of c(u,). e.g., In Figure. 5.5, u, is ug, c(u(n)) is ug and
c(u(n)) is ug.
Repeating this process until ¢ (u,,) is a leaf node, we have gcm(un)(t—r(un)—Z}":_ll 7(c(up))) > T,
Now, if we try to apply statement d) of Lemma 5.4.2 in this case, there must exist u; € I(c"™(u;)) —
{c"™ Y(u;)} such that r — 7; — N 7(c!(u;)) is an update slot of ug. This is a contradiction since

I(c™(u;)) — {c" Y(u;)} = ¢ for leaf node " (u;). O

5.6 Convergence in Topology 2

Consider a tree of links denoted by G> = (V, £), where each link corresponds to a user, e.g., see
Figure. 5.6. Consider a load of 7(u;) € N slots on each user u; € £. The conflict constraints are
modelled as follows. Two links sharing a common node cannot be scheduled together in any slots. Let

I(u;) denotes the set of users that interfere with user u;, e.g., In Figure. 5.6, I(u)) = {uy, u3, u4, us, ug}.
Definition 5.6.1. In G, let C, be the set of all links connected to node v € V.

For an example, consier Fig 5.6. Here, Cp,, = {u,u2,u3,us}. Observe that C, is maximal clique

set when node v is not a leaf of the tree. For a clique set C, define 7¢ = ) ,cc T(u).
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Figure 5.6: Example of Topology 2.

Lemma 5.6.1. Suppose gi(t) > 75 for an update slot t > |X(0)| + 7(w;), and that u; = (n,m) is the

link connecting nodes n and m. Then at least one of the following must hold
1. Juj € Cy —A{ui} : gj(t — 7(w;)) > 75
2. Juj € Cp — {ui} : gt — 7(w;)) > 70

In either case, t — 7(u;) is an update slot of u;.

Figure 5.7: Example.

Proof. Observe that I(u;) = C, — {u;} U Cpy — {u;} and C,, — {u;} (N Ciy — {u;} = ¢. (See Figure. 5.7)

By applying a), b) of Lemma 5.4.2 for user u; at ¢, we obtain the result. [

In the following, we present the lemmas which will be used to show the convergence of Algorithm 7

in G2. An example of convergence in G is provided in Figure. 5.8.

Lemma 5.6.2. Suppose fort > 1¢, +|X(0)|, there exist links u;, u; sharing a common node n such that

a) t is an update slot of u; and t — 7(u;) is an update slot of u;
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(a) Graph is shown on the left, and the loads 7(«;) on the right.

slot | 1234|567 |89 10|11 12|13 |14 15|16 17|18 |19

up || X[ X| X | X X | X
1753 X | X X | X

u3 X | x X | X X | X

Uy XX X | X X | X

us || X | X XX X | X

ug || X | X XX X | X

uy XX X | X X | X

us X | X X | X X | X

Ug X X X

uio XX X | X X | X

uil X X X X X

up XXX X[ XX X | X | X

uis X X X X X

U4 X | X X | X X | X

Uuis X X X X

Ui XXX XX | X X | X | X

wr | X | X X | X X | X X | X

(b) Allocation convergence. Here, (black colored) Xs are used to represent the initial allo-
cation for each u;. We note that the initial allocation is generated by Algorithm 6 using the
permutation [1,5,4,3,2,6,15,14,17,16,7,8,9,11,10, 13, 12] on users. For each u;, the updated
allocations (Xs) are colored red, blue and green alternatively. Algorithm 7 has converged at

t= since K =6 =11, Also, note that K(8) = 8, K(9) =7 and K =17.
17 (17)=6 g‘ax Al h (8)=8,K(9)=7and K(16) =7

Figure 5.8: Convergence of Algorithm 7 in G».
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b) gi(t) > 15

c) gj(t — t(u;)) > 75

Then, there exists time t' > t — 1c, and links uy,u; sharing a common node n’ such that
) ug € Gy —{ui} = gi(t" + t(u)) > 75

ii)u € Cor — {ux} = gi(t") > 750

iii) (n,n’) = uy

(a) Scenario 1. (b) Scenario 2.

Figure 5.9: Possible scenarios that can occur in Lemma 5.6.2.

Before we provide the proof, we present an illustrative example of Lemma 5.6.2. Consider the
example in Figure. 5.8. Here, Tg,lax = 6. Note that g;(r) = 7,g2(t — 2) = 7 for uj,u; att = 17. Here,
i =1,j =2and n = n;. It can be noted that g3(¢' + 2) = 7,g4(¢') = 7. Here, Lemma 5.6.2 holds for
k=3,1=4,t =t—6 =11 and n’ = ny. Here, the scenario shown in Figure. 5.9(a) occured.

For another example in Figure. 5.8, consider g3(¢) = 7,g4(t — 2) = 7 for us,us at t = 13. Here,
i =3,j =4 and n = ny. Observe that g4(¢' + 2) = 7,g5(t') = 7. Here, Lemma 5.6.2 holds for

k=j=4,1=5,t=9andn’ = n3. Here, the scenario shown in Figure. 5.9(b) occured.

Proof. Before starting the proof, we make some preliminary definitions. Let {5,-}1.1\2’ 61 be a permutation
of {1,...N}.

Given ¢k : ug, € C, and time ¢’, we say that S;(€,¢’) holds if Ju, € C,, — {ug } : ge(t’) > Tgla",
where ug, = (n,m).

Given A C G, and time #', we say $>(A, ") hold if Jur € C, — A = g¢(t') > 75
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(@) S1(lk,t"). (b) S>(A,t").

Figure 5.10: Illustration of S;(¢x,t’), S2(A,1").

We now present the outline of the proof. In the following, we carry out the proof in steps. At
each step r, there are two possibilities either Si(¢,,,) holds, or S>(A,,t,) holds. If S (¢,,,) holds, the
proof is completed and the Lemma holds. Otherwise, S>(A;, ) holds, which leads to step r + 1, where
either Sy(€y+1,+1) holds, or S3(A,+1,%-+1). The process terminates if S (¢,,¢,) holds at any step r, and

continues otherwise. In the following proof, we show that the process has to terminate in finite steps.

Step 1:

For initialization, let ug, := u;, us, := uj and to := t. Define Ay := {ug,ue }, 11 := to — 7(ug,).
Observe that it is given #; is the update slot of user u,, t is an update slot of u,, and that g, (o) > Tg‘a",
g, (1) > 72 It follows that ug,, u, have no update slots in the interval {to — 7¢,. .., 11 }.

Now, using Lemma 5.6.1 for user ug, (equivalent to say link (n,m)) at time #;, we have that at least
one of the following must hold.

DS, 01 — 7(ug,)), ie., Jue € Coy = {ug, } = ge(tr — 7(ug,)) > 75, where ug, = (n,m). Here, m is the
node m in Lemma 5.6.1.
2)S2(A1,t1 —1(ug,)), i.e., Jur € Cy— Ay = ge(t1 —7(ue,)) > Tg’ax. Here, n is the node n in Lemma 5.6.1.

Lett = t; — t(ue,). If S1(€1,12) holds, observe that lemma is proved for t' =, and k = €1, [ = ¢
(i.e., ¢ from Si({1,12)). Suppose not, therefore S2(Ay,#2) must hold. This implies Juy, € C, — A; :
8o, (t2) > TICnaX, where ¢, is the € from S>(A1,1).

For an illustration, consider the example in Figure. 5.8. Here, 72* = 6. Note that g (¢;) =

C
7,82(t1 —2) = 7 for uj,up at t; = 17. Here, £y = 1,44 = 2 and n = n;. In Figure. 5.8, we have
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g3(t; —4) = 7. Observe that S>(Aj, t,) holds here for uy = u3 € C, — {u;,u2}. Here, £, = 3.

Step 2:

Firstly, note that since ge,(f2) > 72", it follows that us, has no update slot in the interval {7y —

TC,,- -t — T(ug,)}.

Let Ay := Ay U{ue,} = {ugyute,, ue, }, t3 := t2 — 7(ug,). Using Lemma 5.6.1 for user uy, at time 1,,
we have that at least one of the following must be true
DS1(6,13)
2)52(Az,13)

If Si(65,t3) is true, observe that lemma is proved for ' = t;, and k = ¢, and [ = ¢ (i.e., €
from S(¢1,13)). Suppose not, therefore S>(Az,3) must hold. This implies Ju,, € C, — Az such that
8o (t3) > Tg"‘”‘, where (3 is the £ from S>(A»,13).

For an illustration, consider the example in Figure. 5.8. Note that g>(t> + 2) = 7,g3(t;) = 7 for
uy,u3 atty = 13. Here, €| = 2,{, = 3 and n = n;. In Figure. 5.8, we have g4(¢; — 2) = 7. Observe that
S1(A2,13) holds here for u; = us € C,, — {u3}. Here, the Lemma is proved for k = 6, =3, = {3 = 4
and ¢’ = 13.

Repeat this process r times until A, = C,.

Step r:

Ay = Aug,ue,,...oug} = Co, ty i=tr—1 — T(ug,_,) and t,41 := t, — 7(ug,). Using Lemma 5.6.1 for
user i, at time #,, we have that at least one of the following must be true
DS1(6r,tr41)
2)S2(Ay,tr41)

If S1(¢,, t,+1) is true, observe that lemma is proved fort’ = t,,1,k = €,,1 = € (i.e., € from Sy (€, t,41)).
Suppose not, therefore S>(A,,#,+1) must be true. This implies Ju,,,, € C, — A, : g¢,,,(tr41) > TICnaX.
This is a contradiction since C,, — A, = ¢.

Therefore, S({,,,+1) must hold at some step p € {1,2,...r}. Hence, Lemma is proved for k = ¢,

and [ = € (ie., € from S1({p,tp41)), V' = tpe1 =1 — ZfeA,m T(ue). ]

Lemma 5.6.3. g;(1) < t2%.Vi € {1,...,N},t > X, 7(u;) + | X(0)].
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Proof. Lets suppose not, i.e., there exists a user u; and an update slot 7 such that g;(¢) > 75* for some
t> 3N () +|X(0)].

Consider the example in Figure. 5.8. We note that the time 7 considered in this lemma is greater
than 32 (which is an upper bound on the convergence time). In Figure. 5.8(a), the algorithm has

already converged at slot 19.

Using Lemma 5.6.1, there exists a user u; € G, such that g;(r — 7(u;)) > 77*, where n is the
common node of u;,u;. For sake of convenience, let i := i, jo := j and to := t — 7(u;;,)

Consider the rooted version of tree G, as G with root as node n. Let c(n) denote a child of node
n in tree G7. For the sake of convenience, let c?(n) denote a child of ¢(n). In general, let ¢’ (n) denote

a child of ¢"~!(n).

Figure 5.11: Example diagram at step 1.

We present the outline of the rest of the proof. In the following, we present the proof in steps.
At each step we apply Lemma 5.6.2, which leads to a conclusion about a child node. Hence, at each
step, we move one level down the tree. Eventually we reach a leaf node, where applying Lemma 5.6.2

results in a contradiction, hence completing the proof.

Step 1:

Using Lemma 5.6.2 for u; = u;y,u; = uj, at time t = fy + 7(u;,), we have that for some child c(n),
there exists u;, := (n,c(n)) # w;, andu;, € Ce(ny—{u;, } andt; > to—17¢, such that g; (1 +7(u;,)) > o

and g, (t1) > 752**. Here, iy is k, ji is [ and c(n) is n’ from Lemma 5.6.2.
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Figure 5.12: Example diagram at step 2.

Step 2:

Using Lemma 5.6.2 for u; = u;,,u; = uj, at time ¢t = t; + 7(u;, ), we have for some child c2(n), that

there exists u;, := (c(n),c*(n)), u i» € Coagny—{ui} and tp > 1) — TCoam such that g;, (12 + 7(uz,)) > 77

and gj,(12) > 75**. Here, iy is k, j2 is [ and c?(n) is n’ from Lemma 5.6.2.

Repeat the process r times until eventually ¢"(n) is a leaf.

Figure 5.13: Example diagram at step r.

Step r:

Using Lemma 5.6.2 for u; = u;,_,,u; = u;j,_, at time ¢t = t,_; + 7(u;,_,), we have for some child
c"(n) of ¢"~1(n), that there exist u;, := (c"~'(n),c"(n)), u jr € Cer(my — {w;, } and t, > 1,1 — 7, SUCh

that g;, (#, + 7(u;,)) > 77 and g;, (#;) > 77**. Here, i, is k, j, is [ and ¢"(n) is n’ from Lemma 5.6.2.
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Since ¢”(n) is aleaf, C.r(,y—{u;, } = ¢. Therefore, the user u;, cannot exist, which is a contradiction.

This completes the proof. ]

5.7 Comparison with an alternate greedy approach

In the proposed algorithm, at an update for a user u;, we insist on a contiguous group of free
slots { fi(?),. .., fi(t) + T(u;) — 1} for any allocation. Intuitively, it may seem like the allocation is not
efficient, since any free slots in the interval {r + 1,..., fi(¢)} are not allocated due to the contiguous
property. In this section, we consider an alternate greedy approach (AG), where at each update slot
t for u;, T;(t + 1) is allocated as the first 7(u;) free slots in the interval {¢ + 1,...,00}, which can be
considered to be a maximum packing strategy. Just as in the proposed algorithm, 7 is an update slot
for u; if and only 7;(¢) = {t}. In the following, we provide an example showing the allocation under
AG algorithm.

We consider an example in topology G| with 15 users {u,-}l.ljl. Here, I(u1) = up, I(u15) = uy4, and
I(w;) = {uj—1,uis1 } fori = 2,.. ., 14. Theloads [7(u;)]}2, are givenby [4,2,4,4,1,4,4,3,2,1,3,4,1,4,4].
An initial allocation for this setup is provided using black colored Xs in Table 5.8 (on page 153). The
updated allocations under AG algorithm are marked using red, blue, green and violet colored Xs
alternatively for each user u; in Table 5.8 (on page 153) and Table 5.9 (on page 154).

The clique bound for this setup is given by 8. Note that K(1) = 9, K(14) = 9, K(15) = 8 and
K(16) = 9. It may appear that the AG algorithm has converged to the optimal allocations. However
upon closer inspection, one can note that K(27) = 11, K(28) = 12 and K(29) = 13 in Table 5.9
(on page 154). Hence, from this example, it is clear that monotonicity of K(z) does not apply under
the AG algorithm. Furthermore, the AG algorithm can go into sub-optimal allocations in the future,
even though it is optimal now. Specifically for this example, even after 10° slots, K(10%) = 8 and
K(10° + 7) > 8, which indicates the AG algorithm may never converge to the optimal solution, but

only cycles between feasible allocations (some optimal and some strictly sub-optimal).
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Table 5.8: Alternative greedy algorithm.

t S|16 (789101112 13|14 15|16 17
up XXX X[ X | XX X
up X | X X | X X
u3 X | X[ XX

Ug XXX [X X | X[ XX
Us X X

Ug XX | XX X
uy XXX [X XX | X | X
us XX | X X
Ug XXX X | X

U0 XX | X X
Ui XXX X | X | X

up X[ X| X | X X | X | X
up3 X[ XX X

U4 XX | XX X
Uuis XX | XX X | X | X | X
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Table 5.9: Alternative greedy algorithm (continued from Table 5.8).

t || 18 |19 |20 |21 | 222324 |25|26|27 (28|29 30|31 32|33 |34
uj X I X[ X | X | X | XX X X
U X X
uy || X | X | X | X X
Uy X | X | XX

Us X

ug || X | X | X X | X
uz X[ X | XX

ug || X | X X | X | X X | X
U X | X X | X X | X

up || X X X X
Uil X[ X | X X X
up || X X | X|X|X
ui3 X X

uy || X | X | X X | X
uis X[ X | XX X

5.8 Theoretical Results

Proof of Lemma 5.3.1. Since at each update, user u; gets allocated exactly 7(u;) slots, it follows that
gi(t) = 7(u;),vt > |X;(0)|. Note that since «a;(r) and B;(r) are update slots of u;, it follows that u;
occupies the slots in the sets {B;(t) — t(u;) + 1,...,B8:(t)} and {a;(t) — (u;) + 1,...,;(¢)}. Also note
that u; has no allocated slots in the interval {B;(¢) + 1,...,a;(¢t) — 7(u;)}.

Suppose ¢ is an update slot of u;, i.e., ;(t) = t. It follows that slots {r — 7(x;) + 1,...,t} are
occupied by u;. Since q;(t) = t, it follows that r — g;(¢) + 1 = B;(¢) + 1 (because g;(t) = a;(t) — Bi(t)).
Therefore, {B;(t) — 7(u;) + 1,...,B8:(t)} {t — gi(t) + 1,...,t} = ¢. The lemma holds for this case

because the allocated slots {a;(f) — 7(u;) + 1,...,;(t)} C {t —gi(t)+1,...,t} are the only ones in the
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interval.

For the other case, suppose that ¢ is not an update slot of u;. It follows that B;(r) <t < ;(¢). We
have the following two cases.

Case 1: Suppose ¢ < «;(t) —1(u;) + 1. Subtracting g;(¢) from both sides of the inequality, it follows
that r—g;(¢) < Bi(t)—7(u;)+ 1. Hence, it follows that {B;(¢)—7(u;)+1,...,B:(t)} c {t—gi(t)+1,...,t}.
Since t < a;(t) —7(u;)+ 1, we have {a;(t) —t(u;)+1,...,a;(t)} {t—gi(t)+1,...,t} = ¢. The lemma
holds for this case since {B8;(¢) — 7(u;) + 1,...,B8;(t)} C {t — gi(t) + 1,...,t} are allocated slots of u;,
and also they are the only ones in the interval {r — g;(¢) + 1,...,1}.

Case 2: Suppose t > «a;(t) — 7(u;) + 1. Here, slots S} := {a;(t) — 7(u;) + 1,...,t} are occupied by
u;. Subtracting g;(¢) from both sides of the inequality, it follows that r — g;(¢) > B;(¢) — 7(u;) + 1. Now
since t < @;(t), it also follows that r — g;(¢) < B;(t). Therefore, slots S, := {t — gi(t) + 1,...,B;(¢)} are
also occupied by u;. Note that |S;| + |S2| = 7(u;). Since S; US> € {r — gi(t) + 1,...,t}, the lemma
holds. This concludes the proof. ]

Proof of Lemma 5.3.2. We show that for eachi = 1,..., N, there are at at least 7(u;) allocated slots in
the interval {r — K(¢) + 2,...,t + 1}, which is enough to prove the result. We divide the set {1,...,N}
into mutually exclusive (and exhaustive) sets Uy, U, Uz 1, Uz>. We show the claim for each of these
sets in the following.

Let U, denote the set of i € {1,...,N} such that there are at least 7(i;) + 1 allocated slots in the
interval {r — K(¢) + 1,...,t}. It follows that for any i € Uy, there are at at least 7(u;) allocated slots in
the interval {t — K(t) +2,...,t} Cc {t—K(t) +2,...,t + 1}.

Let U, denote the set of i € {1,...,N} such that there are exactly 7(«;) allocated slots in the
interval {r — K(¢) + 1,...,t}, and t — K(¢) + 1 is not an allocated slot of u;. It follows that for any
i € U,, there are at exactly 7(u;) allocated slots in the interval {t — K(¢) + 2,...,t}, and at least 7(i;)
allocated slots in the interval {r — K(¢) + 2,...,t + 1}.

Let U; denote the set of i € {1,...,N} such that there are exactly 7(«;) allocated slots in the
interval {r — K(¢)+ 1,...,t},and r — K(¢) + 1 is an allocated slot of «;. We consider the following two
cases.

Let Uz denote set of i € U3 such that slot ¢ is allocated to u;. Consider any i € Uz ;. Since there
are 7(u;) slots of u; in the interval {t — K(¢) + 1,...,t}, it follows that there is an update slot in the

interval. We consider the following two cases for u;
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Case 1: Suppose that ¢ is an update slot of u;, it follows that slots {r — 7(u;) + 1,. . .,¢} are occupied
by u;. Since there are exactly allocated 7(i;) slots of u; in the interval {t—K(t)+1,...,t}, it follows that
K(t) = t(u;). Since all the other users u; have allocated slots in the same interval {r —7(u;) +1,...,t},
it follows that u; ¢ I(u;),Vj € {1,...,N} — {i}. Hence, it follows that during the update at time ¢, u;
will occupy the immediate free slots {¢ + 1,...7 + 7(;)}. Therefore, there are 7(i;) allocated slots in
the interval {r — K(t) + 2,...,t + 1}.

Case 2: For the other case, suppose that ¢ is not an update slot of u;. Since slots are allocated in
a contiguous interval and since slot ¢ occupied by u; is not an update slot, it follows that ¢ + 1 is also
occupied by u;. Therefore, there are 7(u;) allocated slots in the interval {r — K(¢) +2,...,t + 1}.

For the final set of users, let Us» denote set of i € Uz such that slot 7 is not allocated to #;. Consider
any i € Usj. Since there are exactly 7(u;) allocated slots in the interval {r — K(¢) + 1,. . .,t}, it follows
that there is one update slot for u; in the interval. We claim that the update slot has to be r — K(¢) + 7(u;).
We prove the claim in the following paragraph.

Let ¢ denote the update slot. 1) Suppose all of the allocated slots from update at ¢’ lie inside
the interval {t — K(¢) + 1,...,t}. This implies the 7(i;) slots (from the update) along with the slot #’
are occupied by u;. This is contradiction since there are exactly 7(u;) allocated slots in the interval
{t = K(t) + 1,...,t}. 2) Suppose some of the slots from the update at #’ lie outside the interval
{t-K(t)+1,...,t}, and others lie inside. This implies slot ¢ is occupied by u;. This is a contradiction
since u; does not occupy slot ¢ from the definition of Uz». 3) The only remaining option is that all the
allocated slots from the update at ¢’ lie outside the interval {t — K(¢) + 1,...,t}. Since there are 7(u;)
allocated slots for u; in the interval and since r — K(¢) + 1 is occupied by u;, the only choice for # must
be t — K(t) + 7(u;).

Hence, we have shown that for the arbitrarily considered i € U3y, the slots {r — K(¢) + 1,...,¢ —
K(t) + 7(u;)} are exactly the slots occupied by u; in the given interval {r — K(¢) + 1,...,t}. Note that
for each u; € I(u;), there are at least 7(u;) allocated slots in the interval {r — K(¢) + 1,...,t}. Since
the slots {r — K(¢) + 1,...,t — K(t) + 7(u;)} are occupied by u;, there are at least 7(u;) allocated slots
in the interval {r — K(¢) + 7(u;) + 1,...,t} for each u; € I(u;). It follows that the occupied slots (by
u;j € I(u;)) during the update for u; at time ¢ — K(¢) + 7(u;) must satisfy

) Tt - K@ + @) € (e = K@ + ) + 1,1} (5.7)
i €1(u;)

It follows that the immediate free slot f;(r — K(¢) + 7(u;)) at the update must be ¢ + 1. Hence, during
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this update, u; occupies the slots in interval {¢r + 1,...,# + 7(x;) — 1}. Hence, it follows that for each
i € Usp, there are exactly 7(u;) slots in the interval {t — K(¢) + 2,...,# + 1}. This concludes the

proof. ]

Proof of Lemma 5.4.2. 1t follows from Lemma 5.4.1 that  — 7(u;) is an update slot for either user u; or
some user iy, € I(u;). If t —7(u;) is an update slot for user u;, then g;(r) = 1 —(t —7(u;)) = 7(u;) < 77,
which is a contradiction (since it is given that g;(r) > 77**). Therefore, # — 7(1;) is an update slot for
some user u,, € I(u;).

Let ¢ = Bi(¢), i.e., t’ is the latest update slot of u; before r. We established that during the update
at v/, fi(t') — 1 = t — 7(u;) is already occupied by some user u,, € I(u;). Let I C I(u;) denote the
set of all the users in I(x;) that are occupying the slot  — 7(;). In the following, we will show the
existence of a user u; € I" that satisfies properties b), c)&d) of Lemma 5.4.2, from which a) follows
(since t — 7(u;) is an update slot for all users u € I*).

Using Lemma 5.4.1 for each u,, € I" at time ¢ — 7(u;), we have t — 7(u;) — 7(u,,) is an update slot

for a user in the set {u,,} U I(u,,). Note that u; € I(u,,) for each u,, € I*. Now consider the following

lemma (Lemma A), which shows that ¢ — 7(«;) — 7(u,,) is not an update slot of u; for any u,, € I*.

Lemma (Lemma A). For each user u,, € I*, t — t(u;) — t(uy) is an update slot of some user

ur € {um} U I(um) — {u;}.

Proof. Suppose not. Assume that there exists a user u,, € I, such that t — 7(u;) — 7(u,,) is an update

slot of user u;. It follows that

gi(t) <t —(t —7(u;) — 7(um))
= 7(u;) + T(um)

< 7o

This is a contradiction since it is given that g;(r) > 72**. Therefore, # — 7(#;) — () is not an update

slot of u; for any u,, € I*. ]

In the following, we will show that there exists a user u; € I* satisfying properties b) and d) of

Lemma 5.4.2. It is immediate that c) follows from the above Lemma A.

Lemma (Lemma B). There exists at least one user u; € I" such that there is no update slot of u; in

{+1,. .t =7(u) — t(uj)}.
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Proof. Suppose not. Assume all users u,, € I* have at least one update slot in the interval {¢' +
...t —t(u;) — (um)}-

This implies that every user u,, € I* occupies the slot r — 7(u;) during an update in {¢t' + 1,...7 —
7(u;) — 7(uy,)} and not before. Therefore, during user u;’s update at time ¢, t — 7(u;) ¢ T,,,(¢") for
any u,, € I(u;), i.e., t — 7(u;) is not occupied by any of the users in /(x;). This implies that block
{t — 7(u;),...t — 1} is conflict free during update at ¢, which implies f;(#') < ¢t — 7(x;). This is a

contradiction since we have already established that f;(#") =t — 7(u;) + 1. O

Since {#' — 7(u;) + 1,...1"} are occupied by u;, it follows from Lemma B that the latest update slot

of u; before the update slot r — 7(u;) is 8;(t — 7(u;)) <t — 7(u;). Hence,

gt —t(w)) =t —7v(w;) — B;(t — 7(w;))
>f—t

= gi(?)

max
> Tc

This proves property b) of Lemma 5.4.2. It also follows from Lemma B that slot ¢ — 7(u;) — 7(u;) is

not an update slot of user u;. Property d) now follows from Lemma A since u; € I*. [



Chapter 6

Fluid Limit of Dynamic Resource Sharing

based on Minimum clearing time formulation

6.1 Introduction

Consider the K tier HetNet model in Chapter 4. The key contribution of Chapter 4 is the
distributed framework to solve the minimum resource clearing problem for K tier HetNet model. We
have presented a optimal distributed resource allocation algorithm for the K tier HetNet model. The
resource allocation in Chapter 4 was done for a given fixed set of users U and their demands 7 (or @
(in bits/frame)). In this chapter, we consider a dynamic flow based model which operates on a slower
time scale compared to the RB scheduling time scale in Chapter 4. A flow can be described as a stream
of packets associated with a UE or user file request. The file request can last several frames, e.g., a
flow lasting 1 second equals 100 LTE frames. Under the flow model, the user file requests arrive as a
stochastic process and depart once the service requirement is fulfilled. The network operator (or the
BS) sets the rate at which a user file request (or flow) is served. The policy used to regulate the rate of
service to a flow is known as the flow (or rate) control policy. The objective of a flow control policy

can include congestion control, or ensuring QOS.

In this section, we introduce a dynamic flow control and resource allocation policy for a K tier
HetNet. We consider a dynamic scenario with stochastic flow arrivals and departures. Each arriving
user file request (or flow) requires a certain service demand (in bits) and departs once the service

is completed. We present a joint flow control and resource allocation policy, which is based on the
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distributed framework (developed in Chapter 4) to solve the minimum resource clearing problem. In
the later sections of this chapter, we will consider a more general setup. We are introducing the K tier
HetNet model first as a motivating example for the setup. We will show that the proposed algorithm
will stabilize the network (for any arrival rate vector inside the stability region). We say stability in
the sense that the backlogged file requests do not blow up to infinity.

Flow based models have been used to study internet congestion in the literature [70-72]. An
utility optimization framework for rate (/congestion) control in wireline networks (i.e., internet) was
introduced in [71]. In [72], a-fair bandwidth sharing algorithms were introduced for internet flow
control and the impact of fairness on flow level stability was studied.

In multi-hop wireless networks, flow control (also known as congestion control) happens at the
transport layer, e.g., TCP (Traffic Control Protocol). The transport layer controls the rate at which
packets arrive into the network based on the congestion level. The arriving packets are scheduled at
the MAC (Multiple Access Channel) layer. Following [71], the problem of cross-layer optimization
for multi-hop wireless networks was considered using an utility optimization framework in [19]. The
problem of cross-layer optimization for multi-hop wireless networks was also considered in [10, 19, 73]

With respect to HetNets, flow based models were considered in [36, 38, 39]. In [38], « fair utility
optimization based flow control for two tier HetNets was considered. The results in [38] show that
delay performance is improved by adapting the resource allocation (based on flows in the network)
compared to a static allocation. Flow level stability (under optimized user association) was considered

in [39].

6.1.1 Flow control for K tier HetNet

We consider a similar setup as in Chapter 4. We use graph G (see Chapter 4) to represent the K tier
HetNet. We model the co-tier interference constraints as before. In contrast to the discrete resource
block model in Chapter 4, here, we assume that the spectrum is infinitely divisible, and fractions of
the spectrum can be allocated at any point in time. For a BS m € R(n), I.(m) C R(n) is the set of BSs
in tier i + 1 which cannot be scheduled with BS m on the same fraction of spectrum. Similarly with
the cross-tier interference constraints. A BS in D(n) (i.e, a descendant of n) cannot be scheduled with

any BS in the set /.(n) | J{n} on the same fraction of spectrum.

In general, a BS n cannot be scheduled with any BS in the set /(n) on the same fraction of the
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spectrum, where

=1L |J o Jom ) Aw [ m (6.1)

" mel.(n) meA(n)
co-tier interference

cross-tier interference from n to higher tiers cross-tier interference from lower tiers to n

We consider dynamic arrivals at each BS n; the user file requests (or flows) arrive as an exogenous
process. For the sake of convenience, we take the amount of spectrum available to be 1 (i.e., one unit).
Let {£,(i)};2, denote the sequence of inter-arrival periods (in sec) of user file requests at BS n. The
arriving user file requests have a service requirement (in sec X spectrum unit) from the BS and they
depart once the service requirement is met. Suppose a UE file request u arriving at time ¢ (seconds)
has a service requirement of 77, and it is allocated half of the spectrum from time ¢ to  + 1. Then
the residual service requirement at time ¢ + 1 equals 17; — 0.5. Let {n,(i)}:2, denote the sequence of
service requirements of flows arriving at BS n. We make the following assumption on the inter-arrival

times and service requirements.

Assumption 6. We assume that {£,(i)}°, and {n,(i)};>, are independent iid sequences of random
variables ¥ n € V such that 1/&, := E[£,(1)] < oo and 1/7, := E[n,(1)] < co. Further, the sequences

are independent across the BSsn € V.

Under this model, let g,,(f) denote the number of flows at BS n at time ¢, and let Q(¢) := {g,(¢) }nev
denote the queue lengths at time #. Consider that the flows in queue are served in FIFO order. Attime ¢,
let v,,(¢) denote the time remaining for the next arrival at BS n, and w,(#) denote the remaining service
requirement of HoLL (Head of the Line) flow at BS n. Let V(¢) := {v,(¢) }nev, W(2) := {w,(t) }nev. The
state at time 7 is given by X(¢) := [Q(t),V(¢), W(t)]. A resource allocation policy assigns a fraction
zs(t) € [0,1] of available spectrum to a feasible set S at 7 such that },¢c s zs(t) < 1. This definition
of resource allocation based on feasible sets ensures that the interference constraints are not violated
by the allocation policy. We consider a class of stationary policies which make the decision Z(z) :=
{zs(t)}ses; based on the current state X(¢). Under a stationary policy, the process X = {X(#)}2 is a

strong Markov process (in continuous time) with the state space X := Z|+Vl X RLW X R|+V|.

6.1.2 Stabilizing stationary policy for K tier HetNet

Consider the following LP (6.2) formulated fora Q € Z'X'. Note that this is same as LP (4.3) (from
Chapter 4) with 7(n) replaced by ¢, /77,. Hence, the optimal value of LP (6.2) can be derived using
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the message passing algorithms described in Chapter 4.

min Z fs

SeS

S.t.

Z Is 2 Gn/7in,Vn € G;

S:neS

fs>0VSeS (6.2)

Let L(Q) denote the optimal value of LP (6.2) given Q. We propose the stationary policy that
resource (spectrum) allocation in state Q be done according to the scaled solution [f§]ses/L(Q).
Under the policy, each BS n € G gets a fraction (g, /17,)/ L(Q) of the spectrum in state Q. Under this
approach, the resource allocation only has to be changed when the state of the system changes, i.e,
when a new arrival or a departure occurs. The flow arrivals and departures happen over a much slower
time scale than packets. Hence, less reconfiguration and calculations are required. Experiments in
[74] show that flow-level resource allocation has faster convergence and outperforms packet based
congestion control practices in terms of delay.

The policy can be implemented using the distributed framework (see Figure. 6.1) developed in
Chapter 4. In what follows, y(H[m]) is the solution of (6.2) formulated for the sub-graph H[m] of G.
Refer to Chapter 4 for definition of H[m], y(H[m]) etc.,

[(H[n])

| N\

7(m) vl(H

______ m |-=-=-=---

Figure 6.1: Distributed computation of y(H[n]). Here, the upstream message to n are sent by the

children m € R(n).
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6.1.2.1 Upstream Message passing

Given the current queue lenths Q(¢), L(Q(t)) can be derived using a distributed message passing
algorithm (given in Chapter 4) as the solution of LP (6.2).
Now that the L(Q(¢)) is known, we propose a downstream spectrum allocation according to the

scaled solution of LP (6.2).

6.1.2.2 Downstream Resource allocation

The root BS r allocates (q,(¢)/7,)/L(Q(¢)) for its own transmissions. It initiates the down-
stream allocation by allocating two fractions of spectrum to each child m € R(n). The first fraction
(gm(t)/71m)/ L(Q(2)) to BS m, and the second fraction of spectrum y(H[m])/L(Q(t)) to H[m] according
to the scaled solution of LP (4.12). The allocations are feasible since L(Q) = y(H|[r]) + g, /7, which
implies (g, /77,)/L(Q) + y(H[r])/L(Q) = 1.

Upon receiving the allocated spectrum, a BS n can follow a similar procedure. Using the
v(H[n])/L(Q(t)) fraction of RBs provided by its parent, n can allocate two fractions of spectrum
to its children according to the solution of LP (4.12), scaled by L(Q(¢)). The solution will be feasible
since the scaled solution of LP (4.12) requires a fraction of y(H|[n])/L(Q(t)), which is provided by the
parent.

In the following section, we introduce a more general setup and characterize the capacity region.
We will propose a stationary flow control policy based on the solution of the minimum clearing
problem, just as we did with K tier HetNet model here. The rest of the chapter will be focused on
proving the stability under the proposed policy. We make use of the Fluid limit theory developed in
[21, 22].

6.2 General Model Description

Consider a network of queues labelled as {1,...,N}. Let ¢;(#) denote the number of flows in the
queue i at time 7. Let Q(¢) := {ql-(t)}l.]\i , denote the queue state at time 7. The flow arrivals into queue
i occur as an exogenous process. Let {&(n)} 7, denote the sequence of inter-arrival periods (in sec)
of flows arriving into queue i.

We consider that one unit of resource (e.g., spectrum) is available, which has to be shared among



164 Fluid Limit of Dynamic Resource Sharing based on Minimum clearing time formulation

the queues. There are constraints on sharing the resources among the queues as follows. A queue
i cannot be scheduled on the same fraction of resource along with any of the queues in the set
I(i) c {1,...,N}. Hence, any feasible resource allocation has to assign fractions of the resource to

feasible sets of queues (defined in the following).
Definition 6.2.1. A feasible set is a set of queues S C {1,...,N} such that [(i)(\S = ¢, Vi € S.
Definition 6.2.2. A maximal feasible set is a feasible set which is not a subset of any other feasible set

The sequence of service requirements (in sec X unit of resource) of the arriving flows at queue
i are given by {n;(n)}>>,. For example, suppose a flow request arriving at time ¢ (seconds) has a
service requirement of 71, and it is allocated half of the available resource from time ¢ to ¢ + 1. Then
the residual service requirement of the flow at time 7 + 1 equals 7 — 0.5. We make the following

assumptions on the inter-arrival times and service requirements of flows.

Assumption 7. We assume that {£;(n)},”  and {n;(n)}7, are independent iid sequences of random
variables Vi € {1,...N} such that 1/& := E[&(1)] < oo and 1/7; := E[n;(1)] < co. Further, the

sequences are independent acrossi € {1,...N}.

Assumption 8.

E[(&(1))*] < 00, B[(;(1))*] < oo, fori=1,...N (6.3)

We consider HoL processing, where flows are served in the order of their arrival into the queues.
At time ¢, let u;(¢) denote the time remaining for the next arrival at queue i, and v;(¢) denote the
remaining service requirement of HoL flow in queue i. Let U(r) := {u;(1)}Y |, V(1) := {vi()}Y,. We
consider the state at time ¢ to be X(¢) := [Q(¢),U(¢), V(1)].

A resource allocation (or scheduling) policy assigns a fraction zg() € [0, 1] of resource to a feasible
set S at ¢ such that ) ¢. 5 zs(f) < 1, where S is the set of all the maximal feasible sets. We consider the
class of stationary policies (see Definition 6.2.3) which make the decision Z(z) := {zs(¢)}ses based

on the current state X (), i.e., {zs}ses is a function of state X'. We note that the class of stationary

Tn general, it is possible to consider classes of scheduling policies which do not satisfy this property. However, these
other classes do not achieve more in terms of stability region. This fact can be shown using the same arguments used in

the proof of Theorem 6.2.1
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policies that we consider here also include the policies with knowledge of U(¢), V(). In practice, it
is not possible for policies have access to U(t), which would require foresight of the next arrivals.
Nevertheless, this knowledge does not provide any additional advantage to the policy in terms of

stability, as it will become clear in the following Theorem 6.2.1.

Definition 6.2.3. A stationary scheduling policy 0 : ZN x RY x RY — [0,11'S! is a mapping from the
state X to {z5(X)}ses such that Y gcs 75(X) = 1.

Table 6.1: State Notation.

Notation Description

X(t) :=[0(),U(z),V(1)] The state of the system at time 7.

N The queue lengths at time ¢. At time 7,
(1) =A@},

¢qi(t) is the number of backlogged flows in queue i at time ¢.

The residual arrival times at time ¢. At time ¢,
U(r) := {wi(n)}yY,
u;(t) is the time remaining for next arrival into queue i.

The residual service requirements at time ¢. At time #,

V(t) == (it}

v;(t) is the remaining service requirement for HoL flow at queue i.

Under a stationary policy, the process X = {X(#)} 2, is a strong (continuous time) Markov process
with the state space X := ZY x RY x RY . To establish the strong Markov property, we use the same line
of argument given in [21]. Because of Assumption 7, we can check that X is Markov for a stationary
policy. As time 7 increases, u;(¢) and v;(¢) decrease, while the remainder of the state {q,-(t)}l.]i | remains

N

constant. A jump occurs for X when one of the residual processes {u;(¢)}._,,

{vi(t)}Y | reaches zero.
Hence, {X(7)};>0 is a piecewise deterministic Markov process, which satisfies Assumption 3.1 of [75].

The strong Markov property follows from [75] (page 362).

Remark. Although we consider HoL processing for the queues, the results can be directly applied
to processor sharing queues (where all the flows in a queue are served with equal effort) under the
assumption that the service requirement distribution is exponential. This is possible since the state

X(1) := [Q(t), U(t)] under exponential distribution for service requirements.
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For general service distributions, the state X has to be redefined for processor sharing queues to
include all the residual service requirements of the flows in the queue. Moreover, the fluid limit is also

different in this case [21].

6.2.1 Stability Region

Definition 6.2.4. We consider the network to be stable under a stationary policy if and only if

1 t
lim sup ;/ Elqi(s)]ds < oo, fori=1,...,N (6.4)
0

t—o0
Definition 6.2.5. The network is stabilizable if and only if there exists a stationary policy under which

it is stable.

Define
pi =& /m, Vie{l,...,N}, (6.5)

and p = [pi]Y,.
Consider the following LP (6.6). We provide a capacity characterization using the optimal value
of LP (6.6) in Theorem 6.2.1.

min Z fs

SeS

st. > fszpuVie{l,.. N}

S:ieS

fs=>0VSeS (6.6)

where fs is the fraction of resource allocated to the feasible set S and S is the set of all maximal

feasible sets.

Theorem 6.2.1. Let {f}scs denote the optimal solution of LP (6.6). The system is stabilizable if

2ses fs < 1, and not stabilizable if Y.gcs f§ > 1.

Proof. We provide the proof of instability here. The rest of the chapter is dedicated to proving the
other case.

Suppose that Y.gcs f& > 1. Let H denote the set of all solutions {zs}secs such that ¥ g zs < 1.
For any {zs}ses € H, we claim that ) ¢.;cg zs < p; forsome i € {1,...,N}. The proof of the claim is

given in the following paragraph.
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Suppose not, and assume Y g.;cg 2s = pi, Vi € {1,...,N}. It follows that { fs}scs := {zs}ses is a
feasible solution of LP (6.6). The value of objective function under this solution equals > ¢cg 25 < 1,
which is a contradiction since the optimal value > scs f¢ > 1. Hence, the claim is proved.

Define

ki :=inf sup p; — Z zs (6.7)
Hj=t..N " s

Consider any arbitrary stationary scheduling policy. Let Zg(¢) = fot zs(w)dw denote the amount of
resource allocated to a feasible set S until time 7. Let G;(t) := }.g.jcg Zs(t) foreachi = 1,...,N. Since
Yses Zs(t) < t, it follows that {Zg(t)/t}ses is an element of H for any time ¢ > 0. In the following,
we consider the queue lengths under the chosen scheduling policy.

The counting processes corresponding to arrival process and departure process (at queue j) are

given by the following equations.

n—1

a;(t') = max{n : u;(0) + Z (k) <1} (6.8)
k=1
n—1

d;(t") = max{n : v;(0) + Z nj(k) < '} (6.9)
k=1

The queue length of queue j at time ¢ satisfies

qi(t) = q;(0) + a;(t) — d;j(G;(1)) (6.10)

The inequality is since the queue may empty in between 0 and ¢, and departures are not possible when
the queue is empty.

It follows from SLLN for renewal processes that
[lim aj(t)/t = & as. (6.11)

foreachj=1,...,N.
We also claim that foreach j = 1,...,N

lim sup d;(G(t))/t = 77; lim sup G;(t)/t a.s. (6.12)

—0o0 —00

The proof of the claim is given as follows. Suppose first that lim sup,_, ., G;(t) < oo, it follows that al-

most surely lim sup,_,, d(G;(t)) < co. Hence, limsup,_,, d;(G;(t))/t =0 = 7i; limsup,_,,, G;(¢)/t a.s.
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For the other case, suppose limsup,_,, G;(t) = co. It follows that
lim sup d;(G;(1))/t = lim sup (d(G;(1))/G;({1)) (G;(1)/1) (6.13)
t—o0 t—o0
By applying SLLN for renewal processes, we have limsup,_,., d;(G(t))/G;(t) = 7j; almost surely.
Hence, in either case, we have the result (6.12).

It follows from (6.10)-(6.12) that, for each j = 1,..., N, almost surely,

lim inf q;(1)/ 2 & —7jlim sup G;(1)/t (6.14)
—0 t—o0
= (EJ —17; Z lim sup Zg(t)/t) (6.15)
S.jes 7
Recall that {Zs(t)/t}ses € H for any ¢ > 0. It follows that, given any r > 0, 3i € {1,..., N} such that
(é—m}jzwwﬁzmh (6.16)
S:ieS

where kj is defined in (6.7). Since ¢;(t) > 0,Vj,Vt > 0, it follows from (6.15) and (6.16) that
N
lim inf ; q;(0]t > ky nf s (6.17)

Let k; := kyinf ey, . ny 77;. From the definition of lim inf, it follows that 37 such that Zj.v: 1q;(t) >

kot/2, a.s.Vt > Ty. Since g;(t) only takes values in non-negative integers, it follows that for r > T7,

M-

E[q;(t)] > kot/2 (6.18)
j=1
Hence, it follows that
1/tiE[ (¢)]d >1/tﬁd (6.19)
; Jy 2Bl @Ndo> 7 | S 0ds .
:@w—ﬂ) (6.20)
At 1 '
It is immediate that
1 Y
lim sup ;/0 Z E[gij(¢)]ldg = oo (6.21)
—o0 .
j=1

Hence, the system is not stable under the chosen policy. Since the choice of policy is arbitrary, it

follows that the system is not stabilizable. 0
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6.3 Stabilizing Stationary Policy

6.3.1 Linear Programming Formulation

Consider the following LP (6.22). Let L(Q) denote the optimal value of LP (6.22) fora Q € ZQ’ -0.
min Z fs
SeS

s.t. Z fs = qi/7i, Vi€ {l,...N};

S:neS

fs>0VSeS (6.22)

We propose the scheduling policy which allocates zs = f/L(Q) fraction of resource to a feasible
set S, where {f{}ses is the optimal solution of LP (6.22). The proposed policy is feasible since

Y.ses zs = 1 by construction. Define

(q:/M/LQ) if L(Q) >0
fi(Q) = (6.23)

0 otherwise
Note that queue i gets at least f;(Q) fraction of the resource in state Q by construction. In what follows,
we take f;(Q) to be exactly the fraction that is allocated to queue i under the proposed policy. We will

show that allocating fraction f;(Q) is enough for stability.

6.3.2 Dual Program and Lyapunov Function

Consider the dual-program of LP (6.22) as LP (6.24)

N
max > eiqi/ii

i=1

s.t. Z e, <1,¥S e S;

i;ieS

e;>0,Vie{l,...N} (6.24)

Let & denote the set of extreme points of the polytope defined by the constraints of LP (6.24). Let

Le(Q) = ) eiqi/n; (6.25)

M=

i=1
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for each e € &. It follows from strong duality theorem that

N
L(Q) = max Z‘ eiqi i (6.26)
= max Le(Q) (6.27)

Hence, L(Q) is a positive real number for each Q € Z¥ — {0}, and is zero for Q = 0. In the following
sections, we will introduce the fluid scaling model for the considered setup. We will establish the
existence of a fluid limit. We will show that the function L(.) serves as a Lyapunov function for the

fluid limit model.

6.3.3 Alternative stability condition using dual interpretation

We present the following Lemma 6.3.1 which provides an equivalent statement of the stability
condition in Theorem 6.2.1. This will be the stability condition which will be used in the following
sections. In the rest of the chapter, we will show that the system is stable under the proposed policy,

if (6.29) holds.

Lemma 6.3.1. Let {f{ }ses denote the optimal solution of LP (6.6), and p := (&) ﬁl-]f.\i - Then the
following two statements (6.28), (6.29) are equivalent.
Z fi<1 (6.28)
SeS
N
D epi<lVee& (6.29)

i=1

where & denote the set of extreme points of the polytope defined by the constraints of LP (6.24)

Proof. Note that the dual program of LP (6.24) is equivalent to LP (6.6) with g;/7; replaced with p; for
eachi = 1,...,N. Hence, the optimal value of the dual program of LP (6.6) equals max,eg Zf.\i | €iPi-

The result is now immediate from the strong duality theorem. [

6.3.4 Queue Evolution

Assuming that the system starts in an initial state X(0) = [Q(0),U(0),V(0)]. The queue evolution

equation is given in the following equation (6.30)

qi(t) = qi(0) + a;(t) — di(gi(t)) (6.30)
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where a;(¢) is the number of exogenous arrivals at g; until time ¢, g;(¢) is the cumulative resource
allocated to ¢; until time ¢ and d;(g;(¢)) is the number of departures from g; until time 7. These

quantities are defined as follows

i(t) = i d 6.31

a0 = [ s@enas (6.31)
n—1

ai(r) = max{n : w,(0) + »_ &(j) < 1} (6.32)
j=1
n—1

di(r) = max{n : vi(0) + > mi(j) < 1} (6.33)
j=1

In what follows, with a slight abuse of notation, we use f;(s) to represent f;(Q(s)) for the sake of

brevity. Also, define g;(¢) := /Ot fi(s)ds.

6.4 Fluid Scaled Model

Let {x,};en € X denote a sequence of states such that |x,| — oo as r — oo, where |.| is the L1
norm. Consider the sequence of fluid scaled processes {X")(r)},en with the corresponding initial

states {x,/|x,|}ren, defined as follows

XO() := X(|x18)/| x|, Vr € N,t € Ry (6.34)
i.e.,
(1) = i1 10)/ x|, (6.35)
W0 = wi(| 10) /1%, (6.36)
vO(0) = vilx 10/ 1%, Vi = 1,.. . N, ¥r € N, t € Ry, (6.37)

Note that the sequence of scaled initial states satisfy | X)(0)| = 1 for each r. Also, define

g"0) = gillx 1)/ 1%, (6.38)
(1) := @il 1)/ |, (6.39)
d"(t) == d(|x 10/ 1%, Vr e Nyt € Ryji € {1,... N} (6.40)

and,

£ = filx o), Vr e Nyt € Ryji € {1,... N} (6.41)
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We are interested in the limit of the sequence of the fluid scaled processes {X)(f)},cn. We establish
the convergence to the fluid limit in the Skorokhod topology, i.e., the space of so called Cadlag

functions which are right continuous and have left limits everywhere.

We now present the key ideas behind the Fluid limit model. In section 6.6, we will show that
the fluid scaled processes converge (u.o.c) to the fluid limit in the Skorokhod topology almost surely.
The fluid limit model is considered to be stable if 3T such that the fluid limit X(¢) = 0,Vz > T. The
fluid limits are absolutely continuous functions, and are hence differentiable almost everywhere. In
section 6.7, we will show that fluid limit is stable (by considering the trajectory of L(Q(¢)) as the

Lyapunov function), provided (6.29) holds.

The rest of the chapter is the application of the framework originally developed in [21, 22] to our
model. In section 6.8, the existence of finite moments of the process X(¢) is then established using
the theory developed in [22]. The stability of the fluid model is a prerequisite for application of the

results in [22]. Hence, showing the stability of the fluid limit model is the heart of this chapter.

We present the layout of the rest of the chapter.

* In section 6.5, we present the preliminary results and definitions which are required for the

theory that follows in the chapter.

* In section 6.6, we show that the scaled processes considered in (6.34)-(6.41) converge to a fluid

limit.

* Assuming that (6.29) holds, in section 6.7, we show that the trajectory of the fluid limit converges
to 0 by some time 7, for any initial choice of initial state X(0). This result is referred to as the

stability of fluid limit.

* [21, 22] consider a multi-class queueing network. Suppose that the fluid limit for a mulit-class
queueing network is stable, and the second moments of the arrival and service processes are

finite. In [22], it is shown that the expected queue lengths converge to a steady state value.

In section 6.8, we adopt this framework to our resource allocation problem. We use two key
theorems from [22] along with the fluid limit stability result to prove that the queueing system

is stable under our proposed flow control policy.
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6.5 Preliminary Results and Definitions

Before presenting the fluid limit results, we provide the definitions and preliminary results which
will be used in the proofs. This section contains the necessary theory which will be referred to in the
later sections. It does not contain the results of the work presented in the chapter, just preliminary

necessities. Therefore, the reader may skip reading this section, and refer back if required.

Definition 6.5.1 (Point-wise convergence). A sequence of real valued functions h, : Y — Ron € N

converges point-wise to a function h if, for any y € Y and € > 0, there exists Ny, such that
|hn(y) - h(y)| <€, Vn > Ny,e (642)
Point-wise convergence is denoted as h, — h.

Definition 6.5.2 (Uniform convergence on compact sets). Let (Y,Y) be topological space. Consider
a sequence of functions h, : Y — R,n € N. The sequence h,, is said to converge to h uniformly over

compact sets if, for every compact set Y. CY and € > 0, there exists Ny, . such that
|hn(y) - h(y)l < E,Vl’l Z NYC,S ’Vy € YC (643)
Uniform convergence on compact sets is denoted as h, — h u.o.c.

The following lemma (taken from [21]) will be repeatedly used to obtain u.o.c convergence of the

fluid scaled processes (to the fluid limit), which will be done in the following section.

Lemma 6.5.1 ([21], Lemma 4.1). Let {h,} be a sequence of non-decreasing functions on R, and h

be a continuous function on R.. Assume that h,(t) — h(t) for all rational t > 0. Then h,, — h u.o.c.

Proof. See proof of Lemma 4.1 from [21]. OJ

The following lemma provides an important result. It establishes that the Lyapunov function
L(Q(t)) of the fluid limit Q(¢) (which will be derived in the following section) stays at zero after it
decreases to zero from its initial value. A similar lemma (Lemma 5.2 in [21]) was given in [21]

without proof. Here, we provide a proof for completeness.

Lemma 6.5.2 ([21], Lemma 5.2). Let h : [1,00) — [0, ) be a non-negative function that is absolutely
continuous and k > 0 be a constant. Suppose that almost everywhere on [1,00) all regular points t

(i.e., where derivative exists), h'(t) < —k whenever h(t) > 0. Then h is non-increasing on [t,c0) and

h(t) =0, fort > v+ h(1)/«.
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Proof. Since h(.) is a non-negative function, i(7) > 0. Let 79 := inf{t > 7 : h(z) = 0}. By definition
of 19, we have h(t) > 0,V7 <t < 19. Since it was given that 4’() < —« whenever h(t) > 0, it follows
that that 4 is non-increasing in the interval (7, 1), and that 79 < 7 + h(7)/«.

We will now show that A(t) = 0,Vt > 19. We use proof by contradiction.

Suppose not and assume A(z) > 0 for some t = 75 > 19. Consider 71 := sup{t < 7, : h(t) = 0}.
Note that 79 < 71 < 1. Since A(.) is continuous, it follows that A(t) > 0,Vt € (11, 72]. Since A(.) is
absolutely continuous, it follows from fundamental theorem of calculus for Lebesgue integration that

™
/ K (s)ds = h(1) — h(t)) = h(1) > 0 (6.44)
T1
Note that since h(t) > 0,Vt € (71,72) and it is given that 4’(f) < O at all regular points such that
h(t) > 0, it must be true that /T ? K(s)ds < 0, which contradicts (6.44). Hence, h(t) = 0,VYt > 19 and

h is non-increasing on [T, ©0). [

The following two theorems are key results from Renewal theory. For proofs, refer to Theorem 5.5.2

from [76]. We note that u = oo is a possible value in the following renewal theorems ([76]).

Theorem 6.5.3 (Strong Law of Large Numbers for Renewal Process). Let {m(t)},>o denote a renewal

counting process with a mean inter-arrival period of u > 0. Then almost surely

lim m(e)/t =1/p

Theorem 6.5.4 (Elementary Renewal Theorem). Let {m(t)};>0 denote a renewal counting process

with a mean inter-arrival period of u > 0. Then lim,_,o, E[m(t)]/t = 1/u

The following lemma is another renewal theory result, taken from [22]. For a proof, see Theo-

rem 5.1 (on page 57) in [77].

Lemma 6.5.5 ([22], Lemma 5.2). Let {{(k) : k € N} be an i.i.d sequence taking values in (0, c0), and
let m(t) denote the counting process m(t) :=max{n > 1: {(1)+...+{(n—1) <t}. IfE[{(1)] < oo,

. m(t)\" 3 1 "
Ak [(T) ] - (E[m)])

then for any integer r > 1,
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Hence, under these conditions,
(a) for any § > 0, sup,ss E[(m(t)/1)"] < co.

(b) The random variables

{(m(t)/t)" 1t > 1}
are uniformly integrable.

The following proposition (taken from [22]) is a result concerning a general Markov process on

X. This result will be used to show the stability under the proposed algorithm.

Proposition 1 ([22], Proposition 5.4). Let X be a Borel right Markov process on X, let f : X — R,

and define for some 6 > 0, and a closed set C C X.
7c(9)
V=Bl SX@dxe X
0

If V is everywhere finite, and uniformly bounded on C, then there exists k < oo such that

1 1 [ 1

;EX[V(X(I))] + " E [ f(X(s))]ds < ;V(x) +k t>0xeX

0

where, 7c(8) := min(t > § : X(¢) € C).

6.6 Existence of a Fluid Limit

In this section, we establish the existence of fluid limits for the various processes considered in
(6.34-6.41).

Lemma 6.6.1 establishes the convergence to a fluid limit for the scaled arrival and departure pro-
cesses in (6.39),(6.40). This lemma is equivalent to Lemma 4.2 from [21]. The proof of Lemma 6.6.1

is identical to the one given in [21].

Lemma 6.6.1. Consider a sequence of states {x, },en C X such that |x,| — co as r — co. Suppose

that ul@(O) — i4;(0) and vi(r)(O) — Vi(0)asr — oo foreachi =1,...,N. Then almost surely,

agr)(t) — E(t —i;(0)* wo.c. asr — oo (6.45)

dl.(r)(t) — 7 (t = (0)" wo.c. asr — o (6.46)

foreachi=1,...,N,Vt > 0where (.)* := max{0,.}
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Proof. The proof is given in section 6.9. [l

The following Lemma 6.6.1 establishes the convergence to a fluid limit for the scaled residual
arrival time and residual service processes, which are part of the scaled state X)(r). This lemma is
similar to Lemma 4.3 from [21]. The lemma is is slightly different from Lemma 4.3 in [21] due to
our considered scheduling policy, specifically the processes {g}r)(t)}i]\i ,- The proof here uses similar

techniques as in [21].

Lemma 6.6.2. Consider a sequence of states {x, },en C X such that |x,| — co as r — co. Suppose

that ul@(O) — it;(0), vl.(r)(O) — V;(0) as r — oo. Also, assume that gl.(r)(t) — gi(t) < t almost surely

u.o.c. asr — oo, Vt > 0, where g;(t) is an absolutely continuous function, for eachi = 1,...,N. Then
foreachi=1,...,N, almost surely,
ul@(t) — (@#;(0) = )" wo.c.asr — o (6.47)
vfr)(t) — (7(0) = gi(1))" w.o.c. asr — (6.48)

vVt > 0. Also, {ufr)(t)}reN and {vl.(r(t)}reN are uniformly integrable.
Proof. The proof is given in section 6.9. [

The following Lemma 6.6.1 establishes the convergence to a fluid limit for the scaled queue process

Q")(t) and the scaled cumulative service process { gfr)(t)}l.]i X

Lemma 6.6.3. Consider a sequence of states {x, },eny C X such that |x,| — oo asr — oco. There exists
a subsequence {ry}xen such that X"(0) — X(0) as k — oo, i.e., qlgr")(O) — g(0), ul(r")(O) — ;(0)

and vl.(rk)(O) — ¥;(0) for eachi = 1,...,N. Also, as k — oo, almost surely,

g"™(1) = Git) wo.c. (6.49)

g™ (t) - i) wo.c. (6.50)

for eachi = 1,...,N and ¥t > 0, where, g;(t) is a Lipschitz continuous function (with a Lipschitz

constant of 1), and,

gi(t) = Gi(0) + &(r — @;(0))" = 7:(&i(r) = v:(0))* (6.51)
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Proof. The proof is given in section 6.9. [l

Recall that X)(¢) = [Q")(2), UM)(¢), V) (¢)] for each r € N and Vz > 0. Also, Q")(r) = [ql.(r)(t)]N

=1
U(r) = [ufr)(t)]f\i ,and VO(r) = [vl.(r)(t)]f\; .- It follows from Lemma 6.6.3 that the sequence of

scaled processes {Q")(1)} e, {[g@]N

. I;L, }ren converge to a fluid limit o), [g,-(t)]f.\i] u.o.c a.s. along

the sub-sequence {r¢ }ren. Also from Lemma 6.6.3, X)(0) — X(0) as k — oo.

Hence, the sequences {ufrk)(O), vl.(rk)(O)}keN and {gl(rk)(t)}keN — g,(¢) satisfy the conditions neces-
sary for Lemma 6.6.2. It follows from Lemma 6.6.2, that ugrk)(t) — ii;(t) and vfr")(t) — P;(f) u.o.c ass.
foreachi = 1,...,N. Hence, it follows that U"¥)(t) — U(¢) and V) (r) — V(f) v.o.c. a.s. as k — co.

Therefore, the Lemmas in this section establish that the sequence of scaled processes {X)(¢)}, e,
{[gl.(r)]f.\i | }ren converge to a fluid limit X(1), [g,-(r)]fi , wo.c a.s. along the sub-sequence {ry }ren. The

fluid limit satisfies the following equations

N N N
XO) = > Gi(0) + > @(0) + ) 7(0) = 1 (6.52)
i=1 i=1 i=1
and
(1) = (;(0) — 1)* (6.53)
vi(t) = (3(0) = gi(1)" (6.54)
gi(t) = Gi(0) + &(r — 7:(0))* — 7i(gi(r) — vi(0))* (6.55)
foreachi =1,...,N and V¢ > 0. In the following section, in Lemma 6.7.1, we will show that
dgi(t)  qi(t)/n;
= = 6.56
dt L(Q(1)) (6-50)

foreachi = 1,...,N and t : Q(t) € ZY — 0. The equations (6.52)- (6.56) define the trajectory of the
fluid limit. We consider the fluid limit to be stable if the trajectory reaches 0 state for any initial state

X(0). In the following section, we provide the precise definition of a stable fluid limit model.

6.7 Stability of the Fluid limit

In this section, we consider the derivatives of the fluid limit to study its trajectory. We show that
the Lyapunov function L(Q(t)) has a negative derivative at all regular points t > 7* for some 7* > 0.

Using this, we establish the stability of the fluid limit model (as defined in the following).
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Definition 6.7.1. Any solution {X(t)};s0 = [Q(t), U(2), V(t)]:»0 satisfying the equations (6.52) - (6.56)
is a fluid limit for our model. We say that the fluid limit (or the fluid model) is stable if and only if
there exists a T > 0 (which depends only on 1j;, ¥;) such that X(t) = 0,Yt > T. The value of T must

not depend on the choice of the initial state X(0).

The function g;(z) is the fluid limit of the cumulative service process. In Lemma 6.6.3, we
have established that g;(¢) is a Lipschitz continuous function, which implies that it is an absolutely
continuous function. It follows that g;(¢) is differentiable at almost every ¢. The following Lemma 6.7.1

provides the derivative of g;(¢) for all points ¢ such that L(Q(t)) > 0.

Lemma 6.7.1. Suppose L(Q(1)) > 0. The function g;(t) is differentiable at t = T and the derivative
g(7) is given by

0 = i = LD

Proof. The proof is given in section 6.9. [

The following lemma shows that the fluid limit processes U(t), V(¢) are zero for ¢ > t* for some

7% > 0. This is a crucial component in establishing stability of the fluid limit.

Lemma 6.7.2. There exists T* > 0 which depends only on {&;,7; }f\i | Such that for eachi € {1,...N}

t > ;(0) and g;(t) = v;(0),Vt > * (6.57)

Proof. The proof is given in section 6.9. U

The following two lemmas are concerning the negative derivative of the Lyapunov function L(Q(t))
whenever Q(t) # 0. Recall from (6.26) that L(Q(t)) := maxeeg Le(Q(t)). Lemma 6.7.3 is a derivative

result for L.(Q(t)), and Lemma 6.7.4 is the negative derivative result for L(Q(t)).

Lemma 6.7.3. Suppose L(Q(1)) > 0 for some T > T*, where t* is defined in Lemma 6.7.2. Then

N

dLe(Q_(t))|t_ =Y en Le(O(1))

_ - = 6.58
ai 2P " LG (059)
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Lemma 6.7.4 (Negative gradient of Lyapunov function). Suppose L(Q(t)) > O for some regular point
(i.e., where the derivative exists) T > 7*, where 7* is defined in Lemma 6.7.2. Then

dL(Q(1))
dt

N

r=r < max Zl] eipi — 1 (6.59)

Proof. Note that {q‘,-(t)}l.]i | are absolutely continuous functions from Lemma 6.6.3. Since L(O®)) =
maxecg L(Q(1)), it follows that L(Q(¢)) is also an absolutely continuous function. Hence, it is
differentiable almost everywhere, and 7 is given to be a regular point, where the derivative exists.
Let &; denote the set of all e € & such that L,(Q(1)) = L(Q(t)). Note that %ltﬁ =
f\il e;p; — 1 for each e € & from Lemma 6.7.4. Since L(Q(t)) = maxecg L.(Q(t)),Vt > 0, and since
7 is a regular point, it follows that the derivative

dL(Q(1))

N
= Y i1 (6.60)

i=1
for some e € &;. Hence, the result follows.

]

In Lemma 6.7.2, we established that U(z), V(¢) are zero for ¢ > v*. The following Theorem 6.7.5

establishes that X(7) = 0 for t > T provided max,cg e;p; < 1. It follows that the fluid limit is stable.

Theorem 6.7.5 (Stability of the fluid limit). Suppose maxecg e;p; < 1. Then there exists T(> 1)
which only depends on {é,ﬁi}i]\; | Such that X(t) = 0,Vt > T, where T* is given in Lemma 6.7.2.

Proof. Firstly, note that g;(t) < g;(0) + &t for each t > 0. Hence,

Gi(7*) < Gi(0) + &7° (6.61)

<1+ &7 (6.62)

where 7* is from Lemma 6.7.2. Since L(Q) satisfies (6.26), it follows that

N
L) < max » e (1/; + pit’) (6.63)

1=
Since maxeeg €;p; < 1, it follows that x := 1 —maxeg e;p; > 0. It follows from Lemma 6.7.4 that

for almost every ¢ > 7* such that L(Q(t)) > 0

dLQ®) _

I (6.64)
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It follows from (6.63) and Lemma 6.5.2 that L(Q)(t) = 0,Vt > 7* + % (maxeeg Zf.\;l ei (1/m; + piT*)).
Since L(Q(t)) = 0, only if Q(t) = 0, it follows that Q(t) = 0 fort > T.
Since T > 77, it follows from Lemma 6.7.2 that iz;() = 0,v;(t) = Oforeachi =1,...,Nandt > T.

Hence, U(t) = 0,V(t) = 0 for t > T, which completes the proof. O

6.8 Stability

We now have everything in place to apply the theory from [22]. Using the results of [22], we
show that the expectation of the Markov process X(¢) converges to a finite value in the L1 norm as
t — oo, whenever the fluid model is stable. This completes the proof of stability under the proposed
algorithm.

To show the finite expectation result, we require the following two results from [22]. The proofs of
the following propositions are identical to the proofs given in [21], with exception of a few additional
steps. The departure process in our model is given by d;(g;(¢)), and the equivalent departure process in
[21] has the form d;(¢). Hence, a few additional steps are required to address this change in the following
manner. In our process, we can bound d;(g;(z)) by d;(¢), since g;(t) < t (because g;(t) = fot fi(s)ds
and fi(s) < 1), and this is sufficient to apply the following results. We use this bounding argument in
(6.143) in proof of Proposition 2, and in (6.161) in proof of Proposition 3. The rest of the proofs is
unchanged from [22].

Proposition 2. Suppose Assumption 7 and Assumption 8 holds, and that the fluid model is stable.

Then there exists ty > 0 such that

1
lim —E[|X*(to|x])[] = 0 (6.65)
|x|—>c0 |x|

where {XY(1)},s0 is the Markov process {X(t)};s0 starting from the initial state X(0) = x, and |.| is

the L1 norm.
Proof. See section 6.9 O

Proposition 3. Suppose that Assumption 7 and Assumption 8 are satisfied, and that the fluid model is

stable. Then for some constant ¢* < 00,0 > 0 and a compact set C C X,
7c(6)
E [/ 1+ |X*(0))dt| < (x> + 1), x e X
0

where tc(6) := min(t > 6 : X(¢) € C).
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Proof. See section 6.9 0

Since Proposition 2 and Proposition 3 hold, the following theorem from[22] holds for p = 1 (which

follows from Proposition 1 as given in [22]).

Theorem 5.5, [22]. Suppose Assumption 7 and Assumption 8 hold, and that the fluid model is stable.

Then there exists a constant k, < oo such that

1 [ 1
?/ E.[1Q(s)P]ds < kp {;lxl‘”1 + 1}, t>0,xeX
0

In particular, for each initial condition,

1 t
lim sup /O E[10()Pds < k.

[—o00

where E.[.] is the expectation, given the initial state is x.
Proof. See Theorem 5.5 from [22]. OJ
Theorem 6.8.1. Suppose maxcg €;p; < 1, the system is stable under the proposed scheduling policy.

Proof. It follows from Theorem 6.7.5 that the fluid model is stable when max,.cg e¢;p; < 1. Now from
Assumption 7 and Assumption 8, it can be observed that Propositions 1,2,3 hold. Hence, Theorem 5.5
of [22] holds with p = 1.

It follows from Theorem 5.5 of [22] with p = 1 that there exists «; > 0 such that

lim sup — / Z E.[qi(s)]ds < k;, foreach x € X (6.66)
—o0

where E,[.] is the expectation, given the initial state is x.

Since (6.66) holds for each x € X, it follows that

1Y
lim sup —/ ZE[q,-(s)]ds < K1 (6.67)
t—o0 t 0 i=1
Hence, the system is stable under the proposed scheduling policy. [

6.9 Theoretical Results

Proof of Lemma 6.6.1. Let m(t) denote the renewal counting process corresponding to arrival process

at queue i (i.e., inter-renewal periods are same as the inter-arrival periods at queue i).

m(t) := max{n : Z &() <t} (6.68)
j=1
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From SLLN for renewal processes (i.e., Theorem 6.5.3), it follows that

m(|x,|t)

— &, Vt >0, as. (6.69)
| x|

Hence, almost surely V¢ > 0
m(|x-|0)/ x| — &t (6.70)

The first arrival at queue i does not happen before the residual time |¢;(0)| has elapsed, hence
a;(t) = 0,Vt < u;(0). Fort > u;(0), the arrival process at ¢g; is a renewal counting process. It follows
that

0 if £ < u;(0)
a;i(t) = (6.71)

1 +m((t —u;(0)*) ifr > u(0)
It follows that,

0 if t < ul”(0)
ai(|xt)/1x,| = (6.72)
L (1 + (| |(f - u§’>(0))+)) it £ > u(0)

A

Hence, V¢ > 0,

1
m(|x|(t — u”(0)) < (1) <
|xr | ! ! |xr |

The right side inequality is immeditate from (6.72). For the left side inequality note that, m(|x,|(t —
W(0))*) = 0 when 7 < u”(0), and, m(|x,|(t — u!”(0))*)/|x,] < a”(z) when ¢ > u{”(0) (from (6.72)).

(1+ m(xle - " 0)))) (6.73)

Hence,

1
lim (1) = lim —m(|x|(z — u”(0))*) (6.74)

T
From (6.70) and (6.74), it follows that al@(t) — &(t — ;(0)) almost surely as r — oo. {al@(t)}l
are a sequence of non-decreasing functions, and &(¢ — i7;(0))* is a continuous function. Hence, u.o.c
convergence in (6.45) follows from Lemma 6.5.1.

Similarly, (6.46) follows from the same arguments. [

Proof of Lemma 6.6.2. Note that the residual time to arrival at time ¢ for queue i, i.e., u;(t) can be

written as

ai(t)+1

ui(t) = w(0)+ > &()—1 (6.75)

j=1
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From (6.45) of Lemma 6.6.1, it follows that a;(|x.|t)/|x,| — &(t — #%;(0))* almost surely. Hence for

t > 0, a;(|x,|t) — oo almost surely as r — oo. Hence, for each ¢ > 0, by the SLLN, we have almost

surely

ai(lx |0 +1 .

lim £() = lim L4 + 1 (6.76)
r—oo |xr| =) r—oo fi |xr|
a(r)(t)

= lim —— 6.77)

roe &
= (r - #;(0))" (6.78)

ﬁ e (bxrln)+1 &(j) is non-decreasing function of # and (7 — i;(0))" is a continuous function. It follows

j=1
from Lemma 6.5.1 that almost surely for each r > 0

ai(|x,|1)+1

1
&(j) — (t —i;(0))" v.o.c. (6.79)

| x| =
From (6.75) and (6.79), it follows that ugr)(t) — (#;(0) — 1) + (¢ — #;(0))"u.0.c. a.s. as r — oo. Hence,
(6.47) follows.

To show uniform integrability of u")(¢), note that from (6.75)

ai(|xr)+1
EL 0] = w(0)/ bl + 7= EL D0 &G - (6.80)
r =1
Using Wald’s identity, we have
. 1
Bl (0] = w(O) 1] + 2 Elai(llo) + 1] = ¢ (6.81)

By elementary renewal theorem (Theorem 6.5.4), E[ufr)(t)] — (#;(0) — t)*. The proof of uniform
integrability now follows from Theorem 4.5.4 of [76], since E[ul@(t)] — (4;(0) — )" and ugr)(t) —
(@;(0) —1)* a.s. as r — oo.

Similarly, the residual service requirement of HoL flow at queue i, i.e., v;(f) can be written as

di(8i(1)+1
i =vi0+ > m() - &) (6.82)

j=1
Here, g;(¢) is the cumulative service provided until time ¢, and d;(g;(¢)) is the number of departures

until time .
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From (6.48) of Lemma 6.6.1, and since gl.(r) (1) — g(t) a.s. u.o.c, it follows that dl.(r) (gfr)(t)) —
7:(gi(t) — ¥;(0))* a.s. v.o.c. as r — oo. Hence, d;i(g;(|x,|t))/]|x:| — 7:(gi(¢) — ¥;(0))" a.s. v.o.c. as
r — oo. Hence for t > 0, d;(g;(|x,|t)) — oo almost surely as r — oo for any # > 0. Hence, for any
t > 0, by the SLLN, we have almost surely

di(gi(|x]0))+1

1 digillx 1) + 1

lim n;(j) = lim (6.83)
e lnl SR ol
d7 ("
= lim M (6.84)
r—00 7;
= (gi(?) — vi(0))" (6.85)

1 di(gi(|xr|1))+1
Ly

io1 n;(j) is non-decreasing function of 7 and (g;(¢) — ¥;(0))" is a continuous function

(since it is given that g;(7) is continuous). It follows from Lemma 6.5.1 that almost surely for each
t>0

di(gi(|xr|1)+1

: niG) = @) - 7:(0)* wouc. (6.86)

|, |

j=1
From (6.82) and (6.86), it follows that vl.(r)(t) — (1;(0) — g;(1)) + (gi(¢t) — vi(0))*u.0.c. a.s. as r — oo,
Hence, (6.48) follows.

To show uniform integrability of v(")(r), note that from (6.82)

di(gi(|xr]1)+1

EDO1 = vO)/lwl+ =Bl 3 niti)l =80 (6.87)
r =1
Using Wald’s identity, we have
E(0)] = 5(0)/ 1| + %E[d,f’)(gf”(:» 1151 - g"0) (6.88)

By elementary renewal theorem (Theorem 6.5.4), we have
lim E[d}"(g;"(1)] = lim (E[g]"(1)] ~ 7:(0))" (6:89)

By definition, gfr)(t) < t, for each r € N. Since 0 < gfr)(t) < t for each r € N and since
1limy—e0 gl.(r)(t) = g;(t) almost surely, it follows that lim,_,, E [gl.(r)(t)] = gi(t). Therefore, E[dl.(r)(ggr)(t))]
7:(gi(t) - 7:(0))* and E[g"(1)] — &(r) as r — co. Now from (6.88), it follows that E[v\"(r)] —
v;i(0) — gi(¢) + (gi(t) — v;(0))". The proof of uniform integrability now follows from Theorem 4.5.4 of
[761, since E[v{”(1)] — (7(0) - &(1)* and v{"(1) — (7(0) - &(1))* ass. O
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Proof of Lemma 6.6.3. Since |X")(0)] = 1,Vr € N, itfollows that g\ (0) < 1,u!”(0),v\"(0)¥r. Hence,

along some subsequence {r;};en C {r}ren,

g (0) — Gi(0) (6.90)
u;'(0) — i;(0) 6.91)
V1(0) — 7(0) (6.92)

for each i, as [ — oo.
Note that qgr)(t) = ql@(O) + al@(t) - dl.(r)(gi(r)(t)). We establish the convergence to limit of each
term in the this equation.

Consider the sequence of processes {al(r’ )(t)}leN, it follows from Lemma 6.6.1 that
a’(t) = &(1 — w(0))* wo.c. as. (6.93)

as [ — oo,

Consider {gl.(r’ )(£)}1— 0. By definition,

(rl) 1 |Xr]|t
g (1)= ) fi(s)ds (6.94)
Ty s=

Observe that since fi(¢) is a fraction, 0 < fi(¢r) < 1,Vt > 0. Therefore, for any #,s > 0

|xr[|s |-xrl|t
57 -0l = | [ s [ sioras (©99)
1 |xr[|s
- /| o (6.96)
1 xrll
<|s—1| (6.97)

Therefore, {gl.(r’)(t)}leN form an equicontinuous family of functions. Using Arzela-Ascoli theorem,
there must exist a subsequence {ri}reny C {r7}ien such that {gl.(r") (t)}ren that converges u.o.c to

gi(t)(say) foreachi = 1,...,N. It follows from Lemma 6.6.1 that
d*(g* (1)) = 7(gi(1) = 7:(0))"as. v.o.c (6.98)

as k — oo.
Moreover, g;(¢) is also Lipschitz-continuous as can be seen from the following. Since | gfr")(s) -

gl.(r")(t)l <|s —1|,Yk € N, we have
lim 1g"(s) = g™ (0)] < |s ~ 1 (6.99)

|8i(s) — &i(®)] < [s —1] (6.100)
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Hence, the proof is completed. 0

Proof of Lemma 6.7.1. By definition,

" (g @)/ /L@ () if LQ"(1)) > 0
L) = (6.101)

0 0.W.

Since g;(¢) is Lipschitz continuous for each i, it follows that Q(¢) are absolutely continuous functions
from Lemma 6.6.3. Hence, L(Q(t)) is an absolutely continuous function by the definition in (6.26).
By continuity, it follows that there exists a ¢ > 0, such that L(Q(¢)) > 0 foreacht — ¢ <t < 7 + 6.

Hence from Lemma 6.6.3 and (6.101), almost surely

£ = @0)/1)/ L), Ve € [t = 8,7+ 5] (6.102)

Now for the derivative of g;(¢), note that by definition

|, |t
k ; d
gi(t) = ,35‘30 % (6.103)
= lim / 7 (g)de (6.104)
—J0

Since the function g;(¢) is Lipschitz continuous, it is differentiable almost everywhere. At any

regular point, the derivative can be written as

6 T
2’'(t) = lim li ftl+1ﬁ(k)(¢)d¢
= um um
g 01—0 k—o0 0]

(6.105)
Note that £"(1) — fi(r) := (§i(1)/7)/ L(Q(1)) as. in the interval [7 — 6,7 + 6] from (6.102), and
also fl.(rk)(t) < 1,Vk € N. It follows from Lebesgue Dominated Convergence Theorem that
5 -
[ fig)ag
0

1

g'(t) = i 6.106

g(r) = lim (6.106)
Since L(Q(t)) and §;(¢) are continuous functions, and L(Q(¢)) > 0 in the interval ¢ € [t — 6,7 + 6],

it follows fi(¢) is continuous in the interval ¢ € [t — 6,7 + ¢]. Hence, from Fundamental Theorem of

Calculus

[T e
Jim T = () (6.107)

= g/(1) = fi(1) (6.108)

O
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Proof of Lemma 6.7.2. Since |U(0)| < |X(0)| = 1, it is clear that r > it;(0) for each r > 1. We will
now show g;(¢t) > ¥;(0) fort > t* foreachi = 1,...,N.

Note that g;(¢) is a non-decreasing function, since the residual service process g;(¢) is a non-
decreasing function. Hence, if g;(t’) > v;(0) for some #’, it must be true that g;(t) > v;(0), for any
t > t'. Now, suppose g;(t) < v;(0) for some j € {I,...N} at time t = 79 > 1. It follows that
g;j(t)v;(0),Vt < 719. In the following, we will show that any such 79 must be less than a fixed value 7*.
It immediately follows that g;(t) > v;(0), for each t > 7*.

Since, g;(t) < v;(0),Vt € [1,70], it follows from Lemma 6.6.3 that
gj(1) = Gj(0) + &t — &;(0) > 0,V 1 € [1,70] (6.109)
Since L(Q(1)) > g;(t)/7 > 0,¥ t € (1,10], it follows from Lemma 6.7.1 that
g;(t) = (g;(1)/71))/L(Q(1)), ¥ 1 € (1,70] (6.110)

Note that ;(t) < ;(0) + &t for each i, V¢ > 0. Also note that u;(0) < 1, g;(0) < 1 for each i. It follows
that for r € (1, 79],

g;0)/77; + pjt — p;jit;(0)

(7;()/77;)/L(Q(1) = — 6.111)
e maxeeg Yv €i(Gi(0)/7; + pit)
> B (6.112)
maXeeg ).;L €i/7; + e;pit
> — st il (6.113)
Zl‘zl maXceg €;/1; + MaXeeg €;p;t
Hence, it follows that for each ¢ € (1, 79|
-1
t 6.114
( ) c|1 + oot ( )
1 cot 1
=— - 6.115
CQ(Cl + Czl) c1 + oot ( )
1 C1 1
=—(1- - 6.116
Cz( C1 +C2t) c1 + oot ( )
1 1+
1 _Lraje 6.117)
(65) c1 + cot
where ¢ := [%j fvl maX.cg €;/n; and ¢; := pij Zf\il maxecg €;0;-
Hence, we have
lo (61 + C2T()) lo (Cl + Cz)
8i(70) = /(1) = T = (1 + €1 /o) =oAL 4 (14 ¢ feg)mo (6.118)
1 + 1 +
gi(m) = L= —(1+ c~1/cz)M F(l+el/e )M (6.119)
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The function on the right side in the preceding inequality goes to co as 7y goes to co. Hence,

N

iL;» afixed 7* can also be found,

g;(t) > v;(0) for some 7*. Since, ¢; and ¢, only depend on {;, &}

depending only on these values. [
Proof of Lemma 6.7.3. It follows from Lemma 6.6.3 that for all r > 7*
Gi(1) = Gi(0) + &t — &t (0) — 7:8i(1) + 7 :(0) (6.120)

Now since L(Q(1)) > 0, we have g/(t) = (i(t)/7;)/L(Q(7)) from Lemma 6.7.1. It follows that

for each i,
g(r) =& - 7ig'(v) (6.121)
=& — gi(1)/L(O(1)) (6.122)
Hence from (6.25), we have

dL.(O A N _
L Zl e/ - ;@(r)/ﬁ»/ug(r» (6.123)
= ) eipi — Le(Q(1))/L(Q(7)) (6.124)

i=1

O

Proof of Proposition 2. Let {x,},en C X be any sequence of initial states with |x,| — oo, where |.|
is the L1 norm. Consider the sequence of scaled processes {X")(r)},cw, with the rth process starting
from the initial state x,/|x,|. It follows that |X()(0)| = 1 for each r.

It follows from Theorem 6.7.5 that there exists a sub-sequence {r¢}renw S {r}renw such that
0")(t) — O(1) a.s. u.o.c. It follows from Lemma 6.6.2, that ul(rk)(t) — ii;(¢) and vl.(r")(t) — Pi(t) w.o.c
a.s, foreachi=1,...,N.

From Theorem 6.7.5, 3T > 0 such that Q(¢) = 0,Vr > T. Define ty = max 1,7. Hence, we have,

N
. (re) Y () f 0y —
lim 10" (10)] = lim Z‘ "™ (1) = 0 as. (6.125)
Tim [0 (|, [10)l/ 3| = 0 as. (6.126)
Consider an arbitrary queue i € {1,...,N}. Let m;(¢t) denote renewal counting process corre-

sponding to the arrival process at queue i.

mi(t) := max{n : Z &(j) <t} (6.127)
j=1
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It follows from (6.32) that

0 if t < u;(0)
ailt) = (6.128)
1+ m;(t —u;(0)) if t > u;(0)

Hence, a;(t) < 1 + m;(t — u;(0))*. Since t < (r — u;(0))*,Vt > 0, it follows a;(t) < 1 + m;(¢),Vt > 0.
Hence foreachi = 1,...,N, a"™® < (1 + m;(|x,, |t))/|x,,|. Now since ql.(r")(t) < qgr")(O) + al(r")(t), we

have
(1) < ¢"™(0) + (1 +my 6.129
q; " (t) < g;(0) + (1 + mi(|xr |1)/ |5, | (6.129)

Since (6.129) holds for eachi = 1,..., N, we have

N N N
> a™0) < > g™ 0) + > (1 + millx 1)/ x| (6.130)
i=1 i=1 i=1
N
10"(10)] < 1Q"O) + > (1 + mil|xr, 10))/ |xr| (6.131)
i=1
N
0 (to)|/ x| < 1+ 3 (1 + il 10))/ |, | (6.132)
i=1 N )
10 (|7, 110) 2/ (|6, 10)? < (1/ro 0+ m,-<|xrk|to)>/(|xrklto>) (6.133)
i=1

Since 79 > 1, from Lemma 6.5.5, the sequence of rvs

N 2
(1/f0 + 0+ ml-<|xrk|to>>/<|xrk|ro>)
i=1

keN

is uniformly integrable. Hence, from (6.133), {|Q"(|x;, t0)|?/ (|xr, |t0)?} xen is uniformly integrable.

Now, it follows from (6.126) that

E[1Q" (|xn |00)I> _

lim =0 (6.134)
k—00 (lxrkl)z
It remains to show that
E[|U"(|x,, |to)|?
tim EU (|x§|°)l =0 (6.135)
k—o0 (lxrkl)
E[|V¥%(|x,, |t0)]*
im ZHV o)™ (6.136)

koo (g ])?
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Since tp > 1 and |x,, | = Zl].\i 1(gi(0) +u;(0) +v;(0)), we have o] x,, | > u;(0). Hence, the residual arrival

time at |x,, |f satisfies u;(|x,, [t0) < &i(ai(|x, |to)) for eachi = 1,...,N. Hence, foreachi =1,...,N,

(il 110))”_ (&l )’

< 6.137
o <P (13
1 ai(|xr, It0)
<—s D, &) (6.138)
|'xrk| .]21
AL
<o RGOS (6.139)
Tk j=1
since a;(t) < 1+ m;(t).
By Wald’s identity,
| mi(|xr |70)+2 1
e > G2 = o Elmixn i) + L)) (6.140)
Tk j=1 Tk

Since E[(£(1))?] < oo (from Assumption 8) and since E[m;(|x, |to) + 1]/|x,t0] — & a.s. as k — oo
(from Elementary Renewal Theorem , i.e., Theorem 6.5.4), we have that the preceding equation

converges to 0 as k — oo. Hence, from (6.139) and (6.140),
2
E[(ui(|xr,170)) "]

|2

lim

Jlim o =0 (6.141)
foreachi = 1,...,N. Hence, limy_c E[|U(|x, |t0)|*]/|x,,|* = O.

Now consider v;(|x;,|#o) for an arbitrary i. Note that v;(|x,, |tp) < v;(0), if gi(|x, |t0) < vi(0). Oth-
erwise, if g;(|x, |f0) > vi(0), the residual service requirement satisfies v;(|x, |t0) < ni(di(gi(|x |%0))).

Hence, (proceeding similarly as with u;(|x,, |#o) before) we have

(il ) (ni(gi(l10)))°

5P P (©142
2
< (nl(dl(||j|r§ |t0))) (6143)

(6.143) follows since gi(|x, |to) < |x |to, (because g;(t) = folfi(s)ds, where fi(s) < 1,Vs). By
repeating the earlier arguments, it follows that

2
El(vi(|x,, |t
lim [(vi(] kZ! 0))°]
k—co |xrk|

=0 (6.144)

foreachi = 1,...,N. Hence, limy_c E[|V(|x, |t0)|*]1/| X |* = O.
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So far, we have shown that for any sequence {x,},e;y C X of initial states such that |x,| — oo,
there exists a subsequence {x,, }ren and such that

o EIX (v 1))
m

k—sc0 |xrk |2

=0 (6.145)

Since the choice of initial sequence is arbitrary, and since ¢y does not depend on the subsequence, we

obtain the result. L]

Proof of Proposition 3. It follows from Lemma 2 that there exists a compact set of the form C := {x €

X :|x| £ L}, (where |.| is the L1 norm), such that for each x € C¢ := X - C
X 2 1 2
E[IX (ol xDI"] < Z1x[*. (6.146)

Let P'(x,A) = P(X*(t) € A) be the transition probability of X for A € By, where By is the Borel
o-field of X. By letting ¢(x) := ty max{L, |x|} for each x € X, the preceding inequality can be written
as

1
/ PO, dy)ly[? < 5 |xl? + ble(x), Vx € X (6.147)

where I¢(.) is the indicator function, and b is a finite constant.
Define the sequence of stopping times o = 0, o = #(x), and 0%4+1 = Ok + 05,071, k > 1, where 0
is the shift operator on the sample space. The stochastic process Xi := {X(0%)}x=0 is a Markov chain

with transition kernel
P(x,A) := P(X*(t) € A), x € X,A € By, (6.148)
and the bound (6.147) may be expressed

. 1
/X P(x,dy)Us(y) < Us(x) — 5|x|2 + ble(x) (6.149)

with U»(x) = |x|?>. From the Comparison Theorem (Theorem 14.2.2 from [78]), we then have

-1

Z IX*(o0)?] Z 1X712] < 2(1x)% + ble(x)), ¥x € X, (6.150)
k=0

where k, := min{k > 1 : X € C}.

To prove the proposition, we first show that for some constant ¢,

Ok+1
E l/ (1 + |1 X*O)D)dt]For, | < oI X (@OP* + 1), k > 0,x € X, (6.151)

k
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which by the strong Markov property amounts to
o
E[| +|X*®OP)de] < co(|xP™ +1),x e X (6.152)
0
Because | X*(1)| = |Q*(¢)| + |U*(¢)| + |V*(¢)|. Let us first consider

E[ i (u; (s5))"ds] (6.153)
0

Note that u(¢) < u;(0) for ¢ < u;(0) and u;'(¢) < &(a;(2)) for ¢ > u;(0). Hence, we have

ai(s)+1
W (9 < @)+ > (&)’ (6.154)
j=1
ai(s)+1
<[+ > &) (6.155)
j=1
By Wald’s identity and part (a) of Lemma 6.5.5,
ai(s)+1

El[(u}(s)’] < 1x* + E[ ) (&) (6.156)

j=1
= x| + E[a}(s) + LIE[(&(1)] < |x]* + c1(s + D] (s))? (6.157)

Thus,

ELJ (WX (5)2ds] < [xPor + exlon + (o 2ELED)] (6.158)
<o(x*+1) (6.159)

Similarly, consider E|[ /OU' (v (s))Pds]. vi(t) < vi(0) for g;(r) < v;(0) and v;'(r) < 1:(d;"(gi(?))) for
gi(t) > v;(0). Hence, it follows that

d;(gi(s))+1

WEOP < 0O+ > m()? (6.160)
=1
d;‘(s)+l]
<P+ ) () (6.161)
j=1

since g;(s) < s. Therefore, proceeding similarly, we have

E| " (v¥(s))*ds] < e3(|x|* + 1) (6.162)
0
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So, it remains to bound the integral of |g;* (1)|>. Note that g’ () < q(0) + al(1)

Lemma 6.5.5, there exists a constant ¢4 such that
E[(a'(1)*] < ca(t* + 1), > 0
and hence, for constants cs, cg < 00
(o] ’
E[ ; (g; 1)1 < cso1(|Q0) + (01)P)
<co(lxP+1),xeX

This together with (6.162) and (6.157), shows that (6.152) holds.

Substituting the equivalent bound (6.151) into (6.150), we have for some ¢7 < oo,
Y E
k=0

E <ci(|x>+1)

/%1(1 + |Xx(t)|)dt|7-}k] I{k < k*}

k

. By part (a) of

(6.163)

(6.164)

(6.165)

(6.166)

By Fubini’s theorem and the smoothing property of the conditional expectation, LHS is precisely

Oky

E[0

(1 +|X(r))dt]. Since oy, = tc(tyL), this establishes the proposition.

]
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Chapter 7

Conclusions and Future Work

Resource allocation problems in a general wireless network are well known for being NP-hard.
Much of the complexity comes from the combinatorial explosion in the number of possible schedules
with increase in the size of network. The main theme of the thesis is that additional structure can
lead to tractable solutions to an otherwise hard resource allocation problems. We have considered the
minimum resource clearing problem (which is NP-hard in general) as the key optimization problem in
the thesis. We have presented several networks where the underlying structure led to efficient solutions
to the optimization problem.

In the thesis, hierarchy is the key network structure which was exploited, by considering tree
type graphs. We have presented resource allocation algorithms for various wireless networks, such
as HetNets and mmWave IAB networks. The presented algorithms are distributed in nature and
are of low computational complexity. There are potentially other networks and resource allocation
problems, where a similar approach can be applied. Hence, for future work, one can investigate other
networks and resource allocation problems, where the underlying structure yields efficient solutions.
Alternatively, design of future network topologies can consider imposing structure as part of their
design. As evident from the thesis, such an approach can lead to efficient and optimal multiple access
protocols.

One can also investigate other types of structure, (e.g., ring graph), and investigate how that
affects the hardness of the minimum resource clearing problem. Alternatively, one can consider other
resource allocation problems (e.g., maximum rate problem), in the context of the networks in the
thesis.

In the thesis, we have presented each chapter as a self contained piece of research, apart from the
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noticeable theme of minimum clearing time problem. However, several chapters in the thesis are more
closely associated than it may seem. In the following, we discuss these associations and future work

which is specific to the chapter.

7.0.1 Chapter 2

In Chapter 2, we have derived novel structural results which enable an efficient solution to the
minimum clearing time optimization in three tier HetNets. We have also demonstrated the wide
applicability of the three tier framework, by considering several future hierarchical networks. For
future work, the natural direction is to generalize the framework for K(> 4) tiers. In Chapter 4, we
generalize the resource partitioning framework for K tiers. However, the joint optimization of user
association and resource partitioning is still an open problem for K tiers. As part of 5G, wireless
communication using smaller cells, aerial platforms and satellites is being considered. Hence, future
wireless architectures are predicted to be multi tiered. The optimal multi-tier user association is a key
challenge in the area. Alternatively for future work in three tiers, co-tier interference mitigation as

done in Chapter 4 can also be integrated into the three tier joint optimization.

7.0.2 Chapter 3

Chapter 3 considers the IAB tree network topology for mmWave multi-hop networks. We in-
vestigate optimal scheduling for the IAB network and derive the stability region, under a dynamic
scenario with stochastic packet arrivals, and time-varying link rates. We investigate a class of local
scheduling policies which only require local information for making scheduling decisions. We show
that the stability region for the local class is same as that of global policies, provided the links are
unvarying. We propose a local max-weight based policy which is optimal among the local class.
Using numerical simulation, we show that the performance of the proposed local policy is comparable
to the back-pressure policy under the considered IAB scenario.

An important problem for future work is to find a distributed implementation for an optimal global
policy (such as the back-pressure policy). This would involve investigating the maximum weight
optimization problem on graph G (in Chapter 3), subject to the half-duplex and RF chains constraints.

The simulation results indicate that for the mmWave links (assuming there is no blocking), there

is not much variance in the rates from slow-scale fading. Hence for future work, one can consider a
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deterministic problem (with fixed link rates and mean arrival rates) for the IAB topology. Assuming
there is only one RF chain at each gNB, this formulation would be equivalent to the minimum clearing
time problem for Topology 2 in Chapter 5. Hence, the main challenge is to extend the algorithm in

Chapter 5 to include multiple RF chains.

7.0.3 Chapter 4

In Chapter 4, we introduce the K tier HetNet model, which generalizes the key ideas behind the
three tier framework of Chapter 2. There are two main differences between the two frameworks.
1) Chapter 2 considers the joint optimization of user-association and resource partitioning, whereas
in Chapter 4, we consider that user association is given. 2) Chapter 4 consider co-tier interference
mitigation which was not considered in Chapter 2.

We introduce a novel graphical model to model the interference in the K-tier HetNet. We use this
model to develop a recursive formulation for minimum resource clearing optimization. The recursive
formulation only requires local information, i.e, the information relations at the tier level. We present
a forward-backward scheme to solve the global minimum resource clearing optimization, using the
local recursive optimizations.

For future work, the K tier framework can be generalized by jointly considering user-association
as part of the optimization. The K tier framework is theoretical in nature. Hence, based on the
application, some of the assumptions made here may not apply. Hence, modifications of the recursive
graph structure based on individual applications can be considered for future work. A similar exercise

was done for three tier framework in section 2.5 on applications.

7.0.4 Chapter 5

Chapter 5 provides an iterative local update rule to find the solution of the minimum clearing time
problem. We have shown that the scheme always converges, and converges to optimal solution in the
topologies presented in Chapter 5. The formulation here considers deterministic loads 7(u;) on each
user ;. For the considered topologies, in the long-term, each user u; gets a fraction 7(x;)/75* of time
allocated. We also note that 77** is the optimal value of minimum time clearing LP in Chapter 5.

For a moment, replace 7(u;) by ¢;/7;, and 77** by L(Q). We get the expression for f;(Q) from
(6.23) in Chapter 6. In Chapter 6, g; is the queue length at queue i, and L(Q) is the optimal value of
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minimum clearing LP formulated using queue lengths. The implication is the following.

Consider a queueing analogue of the network in Chapter 5, where each user/node #; maintains a
queue g; which has exogenous flow arrivals. The inter-arrival period and service requirements obey
the same assumptions as in Chapter 6. For this queueing system, each user u; can apply the algorithm
in Chapter 5, with 7(u;) = ¢;/7;. Assuming that the Chapter 5’s algorithm runs on a much faster time
scale compared to flow arrivals, the time fraction achieved by u; equals [ f;(Q)]; from (6.23) in Chapter
6. This means that applying the algorithm of Chapter 5 with 7(u;) = ¢;/7; stabilizes this queueing

network (for all the arrival rates within the stability region).

7.0.5 Chapter 6

The work in Chapter 6 is a very general framework which can applied in many queueing networks.
The framework provides a flow control policy which is based on minimum resource clearing LP
formulation. Broadly speaking, it provides a queueing analogue of the minimum clearing LP. The
immediate consequence is the following. If an efficient scheme to solve minimum clearing LP exists,
then the same solver can be used to implement a flow control policy on the queueing analog of the
network. The introduction of Chapter 6 starts with such an application to the k tier HetNet (of Chapter
4). However, it can also be applied to the networks in Chapters 2 and 5, which also consider minimum

clearing formulations.
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