Scheduling in mm-Wave IAB Networks

Swaroop Gopalam Joint work with Stephen Hanly and Phil Whiting

Macquarie University, Sydney, Australia swaroop.gopalam@mq.edu.au

April 2023.

Outline

- 1 Overview of Scheduling in mm-wave IAB Networks
- 2 System Model
- **3** Overview of Our Contributions
- 4 Prior Work on Scheduling
- **6** Our contributions: Backpressure and Local Maxweight
- 6 Numerical Results
 - 7 Conclusions
- 8 Future Wireless Communications Group

Outline

1 Overview of Scheduling in mm-wave IAB Networks

2 System Model

- **3** Overview of Our Contributions
- Prior Work on Scheduling
- **5** Our contributions: Backpressure and Local Maxweight
- 6 Numerical Results
- 7 Conclusions
- **8** Future Wireless Communications Group

- Massive bandwidth available in mm-wave spectrum
- Friis equation: the free-space path loss is proportional to the square of radio frequency

- Very small cells required
- How to get traffic into small-cell BSs?

- Beamforming needed!
- Massive MIMO: many antennas at BS, and at UE also

- Large number of antennas (phased array).
- Limited number of RF chains due to cost and power constraints.
- Small number of RF chains at BS, maybe 1 at a UE.
- One beam per RF chain.

Hybrid Beamforming

mm-Wave IAB Networks

Red links are wireless backhaul, blue links are wireless access

- Dense networks required to overcome effects of blockage and pathloss.
- IAB: Integrated access and backhaul
- Multihop tree network for backhaul
- Backhaul links are LoS and more reliable than access links

mm-Wave IAB Scheduling

- How to prioritize backhaul links over UE links?
- How to prioritize UE links at different levels in the tree?
- How to prioritize UE links based on instantaneous channel rates?
- How to distribute the required information through the tree?

We take a network stability point of view

Flows and Flow Rates

- Each UE corresponds to a flow of packets
- Flow traffic arrives at the root node at a certain rate (different for each flow)

- First question is: are the flow rates achievable?
- Second, if achievable, find a scheduler that can keep the queues stable
- Existing methods include max-weight scheduling and back-pressure (both due to Tassiulas and Ephremides in 1990s)

- We address these questions in the paper below.
- This talk is about this paper but doesn't cover everything in it

S. Gopalam, S.V. Hanly, P. Whiting, "Distributed and Local Scheduling Algorithms for mmWave Integrated Access and Backhaul" IEEE/ACM Transactions on Networking, Vol. 30, No. 4, pp. 1749-1764, Aug. 2022.

- In a single cell, channel state aware schedulers generally do not consider stability
 - Max rate Scheduler
 - Proportional Fair Scheduler
- Back-pressure scheduler achieves stability for general wireless networks
 - Invented by Tassiulas and Ephremides in early 1990s
 - Requires the solution of a combinatorial network-wide max-weight optimization at every scheduling instant
 - Generally requires network-wide information and is computationally hard to solve
 - Has not been applied to networks with hybrid beamforming

Outline

Overview of Scheduling in mm-wave IAB Networks

2 System Model

- **3** Overview of Our Contributions
- Prior Work on Scheduling
- 5 Our contributions: Backpressure and Local Maxweight
- 6 Numerical Results
- 7 Conclusions
- **8** Future Wireless Communications Group

Hybrid Beamforming

- Each Node has a limited number of RF Chains
- One beam per RF chain
- Point beam toward user or IAB node

5 RF chains, 5 beams

Scheduling Beams

- Each timeslot, nodes need to choose links to schedule
- They choose between user links and backhaul links
- Node n has M_n beams

 $M_n = 3$ Beams

Link Rates

- $\mu_l = \text{link rate in packets/slot}$
- For a backhaul link: $\mu_l \in \{0, \overline{\mu}\}$
- For a access link:
 - $\mu_l \in \{0, 1, 2, \dots, \mu_{\max}\}$
 - fading determines link rate

System Model

Scheduling Links

- One constraint is the RF chains constraint
- Another is the half duplex constraint

Either the parent backhaul link is active, or node n can schedule up to M_n downlink beams (e.g. $M_n = 3$ in network depicted)

Outline

- 1 Overview of Scheduling in mm-wave IAB Networks
- 2 System Model
- **3** Overview of Our Contributions
- Prior Work on Scheduling
- 5 Our contributions: Backpressure and Local Maxweight
- 6 Numerical Results
- 7 Conclusions
- **8** Future Wireless Communications Group

Capacity and Backpressure:

- Characterize the capacity region for the IAB network
- Formulate back-pressure for the IAB network, show it achieves all rate vectors in capacity region
- Formulate a more general max-weight optimization problem for the IAB network
- Show max-weight optimization problem has almost linear complexity in size of network
- Using these results, we provide distributed forward-backward message passing implementation of backpressure

(a) Upstream message passing for weight computation

(b) Downstream message passing for schedule computation

Local Scheduling Algorithms:

- What if each node has to make a decision based on the local link rate information?
- Single cell schedulers.
- Characterize stability region under local decisions (local stability region).

- The gap between the stability regions is proportional to σ_{ℓ}/μ_{ℓ} .
- There is no cost when link rates are deterministic (local region = global region).

April 2023

We investigate the cost of local decisions

- Provide a local max-weight algorithm that achieves local stability region.
- If the link variation are small, local max-weight achieves most of the stability region.

Node n makes a local scheduling decision

Compare global back-pressure, global max-weight, local max-weight, and local proportional-fair in mm-wave simulation (with random links)

Outline

- Overview of Scheduling in mm-wave IAB Networks
- 2 System Model
- 3 Overview of Our Contributions
- Prior Work on Scheduling
- **5** Our contributions: Backpressure and Local Maxweight
- 6 Numerical Results
- 7 Conclusions
- **8** Future Wireless Communications Group

Max Rate and Proportional-Fair

Max sum-rate algorithm:

- Choose link with highest instantaneous rate
- Maximizes the long-term sum-rate

Proportional-Fair algorithm:

- Considers also the average rate of a link $\overline{\mu}$
- Choose link with highest rate relative to long-run rate
- Maximizes the Proportional-Fair objective function

Max-rate Algorithm

Proportional Fair Algorithm

April 2023.

Max-weight algorithm:

- Choose link with highest product $\mu \cdot q$ (the link weight)
- Algorithm actually chooses the set of feasible links with highest total weight
- Stabilizes a network with a single BS
- Doesn't stabilize a general network

 $\mu_1 \mathbf{q}_1 > \mu_2 \mathbf{q}_2$ $\Rightarrow \text{ schedule link 1}$

Max-weight Algorithm

Back-pressure algorithm:

- Chooses flow f on link i with highest weight $\mu_i(q_n^f-q_{n+1}^f)$
- The weight is called the back-pressure across the link for this flow
- Algorithm actually chooses the *set* of feasible links with highest total backpressure
- Stabilizes a general network

Back-pressure Algorithm

Outline

- 1 Overview of Scheduling in mm-wave IAB Networks
- 2 System Model
- **3** Overview of Our Contributions
- 4 Prior Work on Scheduling
- 6 Our contributions: Backpressure and Local Maxweight
 - 6 Numerical Results
- 7 Conclusions
- **8** Future Wireless Communications Group

Dynamic Programming to find maximum weighted schedule

Find v_n , the maximum weight for the sub-tree with n at the top. DP Maximum weight optimizaton:

$$v_{n} := \max_{S \subseteq C(n)} \sum_{m \in S} \left(w_{(n,m)} + \sum_{o \in C(m)} v_{o} \right) \dots + \sum_{m' \in C(n) - S} v_{m'} \quad (1)$$
s.t.
$$|S| \leq M_{n} \quad (2)$$

- A combinatorial optimization problem due to all the possible combinations of nodes for set *S*.
- We show there is a greedy solution to the optimization.

m, P. Co., Om m m2 03 05 04 05 04 09

Sub-tree T_n with n as the top node

April 2023

Received symbol can be obtained by sampling in the DD/Zak domain

$$y[k,l] = \mathcal{Z}_y(l\frac{T}{M}, k\frac{\Delta f}{N})$$

$$= \sqrt{T} \sum_{n=0}^{N} y(nT + \frac{lT}{M}) e^{-j2\pi\frac{k}{N}}$$
(3)
(4)

since y(t) is time-limited to [0, NT), and by definition of Zak transform. As can be seen DZT is equivalent to taking a DFT across the time-frame dimension n on the received signal samples. Assuming integer channel and $k \ge k_p$ and $l \ge l_p$

 $y[k,l] = h'_p e^{j2\pi \frac{l\tau_p}{MN}} x[k - k_p, l - l_p]$ (5)

April 2023.

- If link (n, m_1) is not scheduled, then maximum weight for the graph in the figure is v_{m_1} .
- Suppose link (n, m_1) is scheduled, then maximum weight for graph in the figure is $w_{(n,m_1)} + \sum_{o \in C(m_1)} v_o.$
- Hence, scheduling (n, m_1) results in an increment in weight only if

 $w_{(n,m_1)} - v_{m_1} + \sum_{o \in C(m_1)} v_o$ is greater than 0.

Situation with link (n, m_1)

The optimal solution for DP at n is to greedily pick M_n links with the highest positive increments.

Message passing algorithm to find maximum weighted schedule

(a) Upstream message passing for weight computation

(b) Downstream message passing for schedule computation

Local Scheduling Algorithms

- What if the network is too large and message passing incurs too much delay?
- If the backhaul link b_n is scheduled, no links can be scheduled at n due to the half-duplex constraint.
- Otherwise, a local scheduling algorithms picks links only according to the local information, i.e., link channel state, or queue sizes for links at

n.

Situation with link (n, m_1)

We will now present our Local Max-weight algorithm which is optimal among this class of policies.

- Starts at the top (root), decisions propagate down (see figure on right below)
- Per link queueing (not per-flow)
- If backhaul link b_n is idle, node n can schedule up to M_n downlinks
- Use max-weight criterion $\max_{S \subset \mathcal{L}_n} \sum_{l \in S} Q_n^l \mu_l$ BUT need enough packets queued to fully utilize each chosen backhaul link

Local Max-weight Example

(a) Example network with weighted links

(b) Links scheduled under the traditional max-weight algorithm

э

32/44

April 2023.

Scheduling in mm-Wave IAB Network

gorithm

Outline

- 1 Overview of Scheduling in mm-wave IAB Networks
- 2 System Model
- **3** Overview of Our Contributions
- Prior Work on Scheduling
- 5 Our contributions: Backpressure and Local Maxweight
- 6 Numerical Results
- **7** Conclusions
- 8 Future Wireless Communications Group

mm-wave network simulation:

- gNBs 1-5 are IAB nodes
- gNB1 is root (donor) node
- Number of UEs is between 4 and 11, per IAB
- Backaul links between 330-440m
- UE links between 0-200m

Simulated Network

- UEs at gNBs 2 and 3 have a one-hop backhaul delay
- UEs at GNBs 4 and 5 have a two-hop backhaul delay

Simulation Parameters:

- Links go in and out of outage: Geometric distribution
- Backhaul links in outage with probability 0.01
- Access links in outage with probability 0.1

TABLE I Simulation Parameters

Paramter	Value
Carrier frequency	23 GHz
Bandwidth	1 GHz
Propagation model	3GPP Urban Micro
Slot duration	$125 \ \mu s$
Packet size	100 Kb
RF chains	4
Noise spectral density	-174 dBm/Hz
gNB transmit power	24 dBm per RF chain
Beamforming gain	30 dB (for access), 40 dB (for backhaul)
Noise figure	5 dB (for gNB), 7 dB (for UE)
Number of UEs at gNBs 1-5	10, 5, 9, 10, 8

- Fading on access links is Ricean: K=13dB (LoS), K=6dB (NLoS)
- Packets arrivals are *i.i.d.* Poisson, same mean for all UEs

• Local Maxweight 2

- Like our proposed local algorithm, but without holding back on backhaul links
- Local Proportional Fair
 - Normal proportional fair, but only run if backhaul link is idle
- Back-pressure
 - Can be implemented with our forward-backward algorithm
- Maxweight
 - Not proven, but probably also stable for considered IAB network topology
- Local Maxweight our proposed scheme
 - Like local maxweight 2, but backhaul links only scheduled when they are fully utilized

Average Delays for gNB 1 UEs

 Proportional-fair has lowest delays for UEs directly connected to root IAB node

Average delays of UEs at the root gNB 1

- Local Maxweight 2 is unstable over rate range depicted so not depicted
- Local Proportional-fair is only stable up to 310 Mbps
- The red vertical line represents the capacity limit
- Local Maxweight can get more than this limit for users at this level

Average end-to-end delays of users connected to gNBs 2 or 3

 Local Maxweight has slightly less capacity than Backpressure (and Maxweight)

 (a) Average end-to-end delay vs. arrival rate

(b) Asymptotic behaviour at high arrival rates

Average end-to-end delays of users connected to gNBs 4 or 5

- (1) are delays of UEs connected to root IAB node
- (2) are delays of UEs connected to gNBs 2 and 3
- (3) are delays of UEs connected to gNBs 4 and 5
- Green bar is delay of first hop
- Pink bar is delay of second hop

Conclusions

- Reviewed some important results on scheduling in wireless networks
- Extended them to include constraints in mm-wave IAB networks
 - Showed backpressure has almost linear complexity
 - Forward-backward message passing implementation
 - Introduced a local max-weight algorithm
- Formulated notion of capacity for local algorithms: local capacity region
 - Showed local max-weight algorithm achieves local capacity region
 - Showed local capacity region = global capacity region for deterministic links
- Presented numerical results for mm-wave IAB network simulation
 - Backpressure not as good as max-weight for IAB networks
 - Local maxweight almost as good as global max-weight in terms of delays and achievable arrival rates

Future Wireless Communications Group Macquarie University, Sydney, Australia

lain Collings

Stephen Hanly

Achievements

Hazer Inaltekin

Phil Whiting

Swaroop Gopalam

Dhanushka Kudathanthirige

Research Areas

- Satellite Systems and Communications
- · Remote sensing and IoT
- UAV Communications
- Next Gen Mobile Communications
- Mobile Network Performance
- Fog networks and edge computing
- Anomaly Detection
- Wireless Signals Analysis
- Position Location
- Distributed Cloud Services

2 IEEE Fellows

- Top 100 in Telecommunications Engineering in the Shanghai Based Academic World Rankings 2018
- Best Paper Awards
- > \$1M in currently funded projects

Scheduling in mm-Wave IAB Network

April 2023.

Current Projects

Scheduling in mm-Wave IAB Network

April 2023. 4

PhD and Postdoc Opportunities

We have two research fellow positions available

Salary Package: Level A Step 6(PhD) from \$97,621 to \$104,622 (AUD) per annum, plus 17% employer's superannuation and annual leave loading. Appointment Type: Full-time, fixed term for 2 years

Applications close: Thursday 13 April 2023

We also have PhD positions to be filled, please apply! Tuition scholarships plus stipends (\$28,870 p/a AUD)

Contact: Stephen Hanly: stephen.hanly@mq.edu.au

Scheduling in mm-Wave IAB Network