Joint Flow Control and Resource Allocation in mm-Wave IAB Networks

Swaroop Gopalam Joint work with Stephen Hanly and Phil Whiting

Macquarie University, Sydney, Australia swaroop.gopalam@mq.edu.au

February 5, 2024

1 mmWave IAB Background

- 2 System Model
- 3 Static Slot Reservation Algorithm
- 4 DSR Algorithm

5 Numerical Results

3

< 3 >

1 mmWave IAB Background

- 2 System Model
- 3 Static Slot Reservation Algorithm
- DSR Algorithm
- 5 Numerical Results

< ∃⇒

- Massive bandwidth available in mm-wave spectrum
- Friis equation: the free-space path loss is proportional to the square of radio frequency

- Very small cells and beam-forming required.
- How to get traffic into small-cell BSs?

mm-Wave IAB Networks

Red links are wireless backhaul, blue links are wireless access

- Dense networks required to overcome effects of blockage and pathloss.
- IAB: Integrated access and backhaul
- Multihop tree network for backhaul

mm-Wave IAB Scheduling

- How to prioritize backhaul links over UE links?
- How to control flow rates while scheduling links at different levels in the tree?
- How to distribute the required information through the tree?

Network Cross-layer Control: Jointly controlling flow rates and wireless link scheduling.

Flows and Flow Rates

- Each UE corresponds to a flow of packets
- Flow traffic rate at the root node is controlled by the network (could be different for each flow)

- Optimal Cross-layer Control : Network Utility Maximization subject to scheduling constraints.
 - Back-pressure algorithm for link scheduling.
 - Flow rate control using virtual queues.
- X. Lin and N. Shroff, "The impact of imperfect scheduling on cross- layer congestion control in wireless networks," IEEE/ACM Transactions on Networking, vol. 14, no. 2, pp. 302–315, 2006.
- X. Lin, N. Shroff, and R. Srikant, "A tutorial on cross-layer optimization in wireless networks," IEEE Journal on Selected Areas in Communica- tions, vol. 24, no. 8, pp. 1452–1463, 2006.
- A. Eryilmaz, A. Ozdaglar, D. Shah, and E. Modiano, "Distributed cross- layer algorithms for the optimal control of multihop wireless networks," IEEE/ACM Transactions on Networking, vol. 18, no. 2, pp. 638–651, 2010.

1 mmWave IAB Background

2 System Model

3 Static Slot Reservation Algorithm

DSR Algorithm

5 Numerical Results

< ∃⇒

Link Scheduling Constraints

- One constraint is the half-duplex constraint
- Another is the single RF chain constraint

Either the parent backhaul link is active, or node n can schedule one downlink beam at a time, leading to *node-exclusive scheduling constraints*.

Link Scheduling Problem

Load $\tau_i = \mathsf{Bits} \text{ over link} / \mathsf{Rate} \text{ of link}$

• An optimal allocation uses the minimum total slots to allocate all the links.

slot	1	2	3	4	5	6	7
ℓ_1	Х	Х	Х				
ℓ_2				Х	Х	Х	Х
ℓ_3	Х	Х					
ℓ_4			Х	Х	Х		
ℓ_5	Х	Х				Х	Х
ℓ_6			Х	Х			
ℓ_7	Х	Х					

Optimal Allocation with 7 slots total

A feasible allocation assigns slots to all the links without any conflicts.

slot	1	2	3	4	5	6	7	8	9
ℓ_1	Х	Х	Х						
ℓ_2						Х	Х	Х	Х
ℓ_3				Х	Х				
ℓ_4	Х	Х	Х						
ℓ_5					Х	Х	Х	Х	
ℓ_6			Х	Х					
ℓ_7	Х	Х							

Feasible Allocation.

The **Static Slot Reservation (SSR) algorithm** converges to an optimal allocation starting from an arbitrary feasible allocation.

1 mmWave IAB Background

- 2 System Model
- 3 Static Slot Reservation Algorithm
- DSR Algorithm
- 5 Numerical Results

< ∃⇒

• Initialization: Start with an arbitrary feasible allocation.

slot	1	2	3	4	5	6	7	8	9
ℓ_1	X	Х	Х						
ℓ_2						Х	Х	Х	Х
ℓ_3				Х	Х				
ℓ_4	Х	Х	Х						
ℓ_5					Х	Х	Х	Х	
ℓ_6			Х	Х					
ℓ_7	Х	Х							

At time 1

프 > 프

 Slot booking/reservations of a link are updated in the last slot of the current block of booked slots, *e.g.* Booking of l₇ will be updated now.

slot	2	3	4	5	6	7	8	9	10
ℓ_1	Х	Х							
ℓ_2					Х	Х	Х	Х	
ℓ_3			Х	Х					
ℓ_4	Х	Х							
ℓ_5				Х	Х	Х	Х		
ℓ_6		Х	Х						
ℓ_7	Х								

At time 2

• Update Rule: At each update, each link books/reserves a new contiguous block of slots which do not overlap with its conflicting neighbors.

slot	3	4	5	6	7	8	9	10	11
ℓ_1	X								
ℓ_2				Х	Х	Х	Х		
ℓ_3		Х	Х						
ℓ_4	Х								
ℓ_5			Х	Х	Х	Х			
ℓ_6	Х	Х							
ℓ_7			Х	Х					

At time 3

• This process is repeated.

slot	4	5	6	7	8	9	10	11	12
ℓ_1							Х	Х	Х
ℓ_2			Х	Х	Х	Х			
ℓ_3	Х	Х							
ℓ_4						Х	Х	Х	
ℓ_5		Х	Х	Х	Х				
ℓ_6	Х								
ℓ_7		Х	Х						

At time 4

Initial Allocation.

slot	5	6	7	8	9	10	11	12	13
ℓ_1						Х	Х	Х	
ℓ_2		Х	Х	Х	Х				
ℓ_3	X								
ℓ_4					Х	Х	Х		
ℓ_5	X	Х	Х	Х					
ℓ_6					Х	Х	Х		
ℓ_7	Х	Х							

▲ 臣 ▶ | ▲ 臣 ▶

Initial Allocation.

slot	6	7	8	9	10	11	12	13	14
ℓ_1					Х	Х	Х		
ℓ_2	X	Х	Х	Х					
ℓ_3							Х	Х	
ℓ_4				Х	Х	Х			
ℓ_5	X	Х	Х						
ℓ_6				Х	Х	Х			
ℓ_7	X								

▲ 臣 ▶ | ▲ 臣 ▶

Allocation table showing all the allocated slots until t = 15.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	X	Х	Х							Х	Х	Х			
2						Х	Х	Х	Х					Х	Х
3				Х	Х							Х	Х		
4	X	Х	Х						Х	Х	Х				
5					Х	Х	Х	Х				Х	Х	Х	Х
6			Х	Х					Х	Х					
7	Х	Х			Х	Х	Х	Х			Х	Х	Х	Х	

글▶ 글

Allocation table from t = 4 to t = 17.

	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1							Х	Х	Х					
2			Х	Х	Х	Х					Х	Х	Х	Х
3	X	Х							Х	Х				
4						Х	Х	Х					Х	Х
5		Х	Х	Х	Х				Х	Х	Х	Х		
6	Х					Х	Х						Х	Х
7		Х	Х	Х	Х			Х	Х	Х	Х			

→ E → → E →

Allocation table from t = 4 to t = 17.

	8	9	10	11	12	13	14	15	16	17	18	19	20
1			Х	Х	Х						Х	Х	Х
2	X	Х					Х	Х	Х	Х			
3					Х	Х						Х	Х
4		Х	Х	Х					Х	Х	Х		
5	X				Х	Х	Х	Х				Х	Х
6		Х	Х						Х	Х			
7	Х			Х	Х	Х	Х				Х	Х	Х

1

→ E → < E →</p>

Allocation table from t = 4 to t = 17.

	8	9	10	11	12	13	14	15	16	17	18	19	20
1			Х	Х	Х						Х	Х	Х
2	X	Х					Х	Х	Х	Х			
3					Х	Х						Х	Х
4		Х	Х	Х					Х	Х	Х		
5	X				Х	Х	Х	Х				Х	Х
6		Х	Х						Х	Х			
7	Х			Х	Х	Х	Х				Х	Х	Х

1

→ E → < E →</p>

• The algorithm converges in linear time, at most $\sum_i \tau_i$ slots, to a steady state where allocations are optimal.

	13	14	15	16	17	18	19	20	21	22	23	24	$ au_i$
ℓ_1						Х	Х	Х					3
ℓ_2		Х	Х	Х	X				Х	Х	Х	Х	4
ℓ_3	X						X	X					2
ℓ_4				Х	X	Х					Х	Х	3
ℓ_5	X	Х	Х				Х	Х	Х	Х			4
ℓ_6				Х	X						Х	Х	2
ℓ_7	X	X				X	X	X	Х				2

Allocation table from t = 14 to t = 20.

slot	1	2	3	4	5	6	7	$\rho_i = \tau_i/7$
ℓ_1	X	Х	Х					3/7
ℓ_2				Х	Х	Х	Х	4/7
ℓ_3	X	Х						2/7
ℓ_4			Х	Х	Х			3/7
ℓ_5	X	Х				Х	Х	4/7
ℓ_6			Х	Х				2/7
ℓ_7	X	Х						2/7

Optimal Allocation with 7 slots total

Flow rates under the SSR algorithm can be controlled by manipulating the loads τ_i 's.

1 mmWave IAB Background

- 2 System Model
- 3 Static Slot Reservation Algorithm
- 4 DSR Algorithm
 - 5 Numerical Results

< ∃⇒

In a dynamic setup, there will be flow arrivals and departures. Hence, flow rate control is required.

Dynamic Setup

Dynamic Slot Reservation (DSR) Algorithm

- Scheduling: Use the slot reservation algorithm for scheduling links.
- Flow Control: Adapt the loads depending on the state of the network.

DSR algorithm: Flow Control Rule

 In a given state, the load of a link is proportional to the number of flows over the link normalized w.r.t rate of the link.

Flows & Link Rates

Load ∝ Flows over link / Rate of link

 $\tau_i = 12 \times \frac{\# flows}{rate}$

DSR algorithm: Steady state flow rates

• A max-min steady state flow rate is guaranteed for each flow in the network, *e.g.* The flow rate 6/7 is the max-min rate for this setup.

Flows & Link Rates

- The stability region can be defined as set of the rate vector of flow arrivals that can be supported.
- The DSR algorithm achieves the stability region, same as the optimal cross-layer control algorithm using back-pressure algorithm.

Outline

1 mmWave IAB Background

- 2 System Model
- 3 Static Slot Reservation Algorithm
- DSR Algorithm

5 Numerical Results

< ∃⇒

mm-wave network simulation:

- gNBs 1-5 are IAB nodes
- gNB1 is root (donor) node
- Backaul link distances randomly chosen between 100-600m, have rates [13.2,8.9,11.8,12.6] Gbps.
- UE links between 0-300m

Simulated Network

- UEs at gNBs 2 and 3 have a one-hop backhaul delay
- UEs at GNBs 4 and 5 have a two-hop backhaul delay

Simulation Parameters:

- i.i.d Possion process of UE file requests (flows) with rate ν at each gNB.
- File sizes i.i.d exponential with mean 50 Mb.
- Access links in LoS state (K = 13 dB) with probability 0.9, and NLoS state (K = 6 dB) o.w.
 - In Scenario 1, the access link rates are fixed.
 - In Scenario 2, the link access rates are modelled as a Gilbert-Elliot process between LoS and NLoS sates.

TABLE I SIMULATION PARAMETERS

Parameter	Value					
Carrier frequency	23 GHz					
Bandwidth	1 GHz					
Propagation model	3GPP Urban Micro					
Slot duration	$125 \ \mu s$					
Packet size	100 Kb					
$ au_s$	200					
Noise spectral density	-174 dBm/Hz					
gNB transmit power	30 dBm					
Beamforming gain	30 dB (for access), 40 dB (for backhaul)					
Noise figure	5 dB (for gNB), 7 dB (for UE)					

• Joint-MWM algorithm

• Optimal Cross-layer control algorithm solves proportional fair utility maximization for flow rates and uses back-pressure scheduling algorithm in each slot.

• DSR algorithm

• Our proposed slot reservation algorithm.

Average Delays for gNB 1 UEs

Average Delays for 2nd hop UEs

Average Delays for 3rd hop UEs

< ∃⇒

• This talk is about this paper but doesn't cover everything in it

S. Gopalam, S.V. Hanly, P. Whiting, "Distributed Resource Allocation and Flow Control Algorithms for mmWave IAB Networks" IEEE/ACM Transactions on Networking, 2023 (IEEE Early Access).