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ABSTRACT This paper presents a new OFDM based modulation scheme for communication in doubly
dispersive channels. We call this Delay-Doppler OFDM (DD-OFDM). Our waveform has the same sparse-
channel benefits as orthogonal-time-frequency-space (OTFS) modulation, while offering advantages in
terms of simpler channel estimation, lower symbol error rate and lower out-of-band (OOB) emissions.
We propose the DD-OFDM modulation scheme by introducing precoding across frames of frequency
subcarriers. We show that the resulting waveform has different data carrying basis functions compared to
OTFS modulation. We present the DD-OFDM receiver and derive the base-band model equations. We show
that the base-band model for DD-OFDM leads to a simple and accurate channel estimation algorithm in
non-integer fractional Doppler channels.

INDEX TERMS Delay-Doppler domain, OTFS, OFDM, Delay-Doppler-OFDM, Micro-subcarrier OFDM.

I. INTRODUCTION
Delay-Doppler (DD) domain modulation is a communication
approach for doubly dispersive channels that is robust
to Doppler spread and delay spread simultaneously [1].
Time-varying wireless multipath channels have a sparse
representation in the DD domain. This has recently been
exploited by Orthogonal Time Frequency Space (OTFS)
modulation which modulates data symbols using basis
functions in the DD domain [1], [2], [3], [4], [5], [6].
OTFS has advantages compared to traditional orthogonal
frequency division multiplexing (OFDM) which suffers from
inter-carrier interference (ICI) in doubly dispersive channels
[1], [2], [3], but there are significant channel estimation
challenges for OTFS.

In this paper, we present a new OFDM based DD domain
waveform, which we call DD-OFDM. It has the same
robustness to Doppler spread as OTFS. We show that DD-
OFDM has more accurate and simpler channel estimation,
and a superior symbol error rate performance compared
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to OTFS. DD-OFDM also has lower out-of-band (OOB)
emissions.

Early work on communication over the doubly dispersive
channel took a time-frequency signalling approach [7], [8],
[9]. In time-frequency signalling, data symbols aremodulated
using time-frequency shifted versions of a prototype pulse.
Standard OFDM can be viewed within this framework,
where the prototype pulse is a rectangular waveform at the
symbol rate, and the data symbols of each subcarrier can
be interpreted as frequency shifted versions of this pulse.
The focus of time-frequency signalling was on the design
of transmit and receive pulses to overcome inter symbol
interference (ISI) and ICI [8], [9], [10]. This is a challenge
when channels are fast fading, with high Doppler and delay
spread, which cause ICI and ISI respectively, which limits the
time-frequency approaches.

OTFS is a DD signalling approach that works directly
in the DD domain. The key idea of OTFS is to multiplex
information symbols using basis functions that are nearly
localized in the DD domain [1], [3]. In this domain,
there are fewer channel parameters and they vary more
slowly, compared to the time-frequency domain. The doubly
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dispersive channel causes these basis functions to undergo
a translation along the delay axis due to the time shift
caused by the path delay, and a translation along the Doppler
axis due to the frequency shift caused by the path Doppler
shift, with an additional multiplicative phase shift term. The
resulting baseband input output (I/O) relation for OTFS
modulation (with rectangular pulses) is a twisted convolution
[1], [4], [11]. Although twisted convolution is a complicated
relationship, the channel sparsity in the DD domain can be
exploited for efficient equalization/detection [4], [5], [12],
[13], [14], [15], [16].

OTFS implementations have a standard OFDM front-
end that uses wide subcarrier spacings1 [2], [3], [17], [18].
There are critical challenges in this approach, in terms
of channel estimation and equalization. The DD baseband
model involves discretizing path delays and Doppler shifts
to integer multiples (i.e. taps) of a DD grid resolution. The
delay resolution is given by the inverse of the bandwidth,
whereas the Doppler resolution is the inverse of the DD
symbol time. A key difficulty in OTFS equalization is
that path Doppler shifts appear as phase rotation terms
in the twisted convolution equation. As a result, OTFS
requires knowledge of not only DD channel tap gains
but also the path Doppler shifts which are real valued.
Equalization performance depends on the accuracy of the
estimated channel information [5], [19]. In general, there is
sufficient resolution along the delay dimension due to the
wide bandwidth [5]. However, the Doppler resolution level
is limited since the symbol time has to be small, due to
latency constraints and a need to stay within the coherence
period of the DD domain channel. As a result, non-integer
fractional Doppler shifts need to be considered for practical
implementations [5], [19], [20], [21], [22].
Several DD channel estimation schemes have been

proposed for OTFS over non-integer fractional Doppler
channels. In [5], an efficient embedded pilot based channel
estimation scheme was introduced, where guard bands
were used around the DD domain pilot symbol which
enabled channel measurement in the same OTFS symbol.
The approach was not applicable to non-integer channels,
however a number of related approaches have since been
developed based on [5], which address fractional Doppler to
an extent, either at a significant increase in complexity or
under special assumptions. In [19] and [21] sparse Bayesian
learning based models were proposed to estimate the Doppler
shifts from the received pilot symbols. In [20] a non-integer
channel was approximated by an integer channel by treating
each received pilot symbol as an individual path. In [22] the
model was simplified by assuming that there is at most one
path in a delay bin, and in [23] a time domain interpolation
method was proposed.

1Standard OFDM requires wide subcarrier spacing to limit the effect of
ICI. Unfortunately, wide subcarriers result in having short OFDM symbols
in the time domain, which are prone to ISI and require long time-domain
cyclic prefixes.

In this paper, we propose a new DD-OFDM modulation
approach that avoids the non-integer fractional Doppler
estimation problem by employing micro OFDM subcarriers
(which have much smaller spacing than the Doppler spread)
and exploiting the structure of the resulting inter-subcarrier
interference to estimate the DD channel. The resulting
equalization task includes a phase compensation term that
depends on the path delays. This term can be estimated due
to the high resolution in the delay dimension of the DD
baseband model. Our approach involves multiplexing data
in the DD domain by precoding across a large number of
closely spaced micro OFDM subcarriers. Our DD-OFDM
waveform has a simple precoded OFDM implementation.
It offers simpler channel estimation and superior symbol error
rate (SER) performance compared to OTFS, and also has
much lower out-of-band (OOB) emissions.

The outline of the paper is as follows. In Section II,
we introduce the doubly dispersive channel model.
In Section III, we present our DD modulation scheme, DD-
OFDM, by introducing micro-subcarriers and precoding of
the micro-subcarrier symbols. In Section VII, we present the
DD-OFDM receiver and derive the baseband I/O relationship
for integer Doppler channel, and in Section VII-C, we present
the I/O relationship for general non-integer fractional
Doppler case. In Section VIII, we present a simple
channel estimation scheme for DD-OFDM, utilizing the
I/O relationship derived in Section VII-C. In Section IX,
we present the DD-OFDM baseband model for a non-integer
fractional delay and fractional Doppler channel, and compare
the channel estimation accuracy of DD-OFDM and OTFS
in such channels using numerical simulation. In Section X,
we present symbol-error rate (SER) and spectral efficiency
comparisons of OTFS and DD-OFDM. In Section XI,
we present our conclusions.

II. DOUBLY DISPERSIVE CHANNEL MODEL
This section presents the channel model, and highlights
challenges for standard OFDMmodulation when the channel
is both delay spread and time-varying.

A. CHANNEL MODEL
We consider the standard channel model with P paths, where
for each path p ∈ {0, . . . ,P − 1}, the parameters hp, τp
and νp represent the corresponding gain, delay and Doppler
shift respectively. The received baseband waveform can be
expressed as

r(t) = y(t) + z(t), (1)

where z(t) is the receiver noise and y(t) is given by

y(t) =

P−1∑
p=0

hpej2πνptx(t − τp), (2)

where x(t) is the transmitted signal.
The channel is doubly dispersive when it is both frequency

selective and time varying (i.e. time selective). More
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specifically, frequency selectivity corresponds to when the
delay spread maxp τp is in the order of (or greater than)
the symbol time. Time selectivity corresponds to when the
Doppler spread νmax := 2maxp |νp| is in the order of
(or greater than) the inverse of symbol time (i.e. subcarrier
spacing for OFDM based systems).

The DD domain coherence period is defined as the time
duration over which the parameters hp, τp and νp, do not
change significantly, and hence can be treated as constants.
The DD domain coherence period has been shown to be in
the order of tens of milliseconds and typically much larger
than the channel coherence time 1

2νmax
. For example, channel

coherence time is only half a millisecond for a Doppler spread
of 1 kHz.

An assumption that the path parameters remain constant
over the transmitted symbol time is implicit in all DD domain
modulation schemes [1], [2], [3], [4], [5], i.e. while the
symbol time is greater than the channel coherence time,
it must be less than the DD domain coherence period.

B. STANDARD OFDM IN DOUBLY DISPERSIVE CHANNELS
In traditional OFDM, the subcarrier frequencies are separated
by 1f =

β
M , where β is the total available bandwidth and

M is the number of subcarriers. 1f is typically designed to
ensure that the OFDM symbol duration including the cyclic
prefix (CP), is much smaller than the channel coherence
time (i.e. 1f ≫ νmax), in order to avoid inter-carrier
interference (ICI), and allow single tap equalization in the
frequency domain. This wide subcarrier approach fails when
the Doppler spread is significant, and leads to inter subcarrier
interference in doubly dispersive channels. A common
variant of OFDM is DFT-precoded OFDM which also uses
wide subcarriers [24].

In 3GPP LTE, the downlink uses traditional OFDM with
1f = 15 kHz which is significantly wider than the
Doppler spread of 75 Hz for typical mobility scenarios.
The LTE uplink uses Single Carrier Frequency Division
Multiple Access (SC-FDMA) which is a form of DFT-
precoded OFDMwith the same subcarrier spacing [24]. DFT
precoding has no effect on the ICI problem that occurs in
high Doppler scenarios, i.e. in doubly dispersive channels.
Hence, both traditional and DFT-precoded OFDM schemes
suffer from ICI in doubly dispersive channels.

III. DELAY-DOPPLER OFDM MODULATION
In this section, we present our new DD domain pre-
coded OFDM waveform, which involves employing micro-
subcarriers and a new DFT based precoding approach.
We call this delay-Doppler OFDM (DD-OFDM).

A. MICRO-SUBCARRIER OFDM
We propose to use an OFDM symbol time that is much longer
than the channel coherence time. This long-symbol approach
corresponds to having micro-subcarriers, where the OFDM
subcarrier spacing is much smaller than the Doppler spread.
This small subcarrier spacing means that our DD-OFDM

symbol is matched to the DD domain coherence period,
enabling the DD domain channel parameters to be estimated
efficiently.

In our Micro-Subcarrier OFDM, we replace each tradi-
tional OFDM subcarrier (of width 1f ) by a frequency-frame
of N micro-subcarriers, each separated by 1f

N . There are M
frequency-frames in our proposed Micro-Subcarrier OFDM
symbol, hence MN micro-subcarriers. The micro-subcarrier
separation 1f

N is much smaller than the Doppler spread νmax.
Hence, each DD-OFDM symbol lasts for N

1f = NT seconds,
which is much longer than the channel coherence time, but
smaller than the DD domain coherence period.

The component of the transmitted symbol corresponding
to frequency-frame m ∈ {0, . . . ,M − 1} is

x(m)(t) =
1

√
NT

N−1∑
k=0

x̃(m)k ej2π1f (m+
k
N )t , t ∈

[
−Tcp,NT

)
where x̃(m)k is the information symbol placed on the k th micro-
subcarrier of frequency-frame m, and Tcp is the time domain
cyclic prefix duration. Note that Tcp > maxp τp.

The transmitted symbol, corresponding to allM frequency-
frames, is

x(t) =

∑M−1
m=0 x

(m)(t)
√
M

=
1

√
MNT

MN−1∑
s=0

x̃sej2πs
1f
N t (3)

where x̃mN+k ≜ x̃(m)k . Note that this corresponds to
an OFDM transmitter with MN micro-subcarriers with
subcarrier spacing 1f

N .
Note that our micro-subcarrier approach is not a simple

case of taking DFT-precoded OFDM and making the sub-
carrier spacings narrower. It requires a completely different
modulation and precoding approach to exploit the structure
of the significant ICI that is introduced by the narrow
subcarriers. Additionally, it is not possible to simply use
single tap equalization in the frequency domain due to ICI.
It requires a multi-tap DD domain equalization approach.

In the next subsection, we present our precoding approach
for our micro-subcarrier symbols. A block diagram of our
overall DD-OFDM modulation scheme is shown in Fig. 1.
In Section VII, we will present the input-ouput relationship
for DD-OFDM. In Section VIII, we will present a DD domain
equalization approach based on the delay-Doppler channel
taps that can be obtained by DD domain channel estimation.

B. DD DOMAIN PRECODING
In this subsection, we present our precoding approach for our
micro-subcarrier symbols. The approach is a mapping from
the delay-Doppler domain into the frequency-frames, in order
to create the DD-OFDM symbol. Fig. 2 presents an overview
of the precoding.

The data symbols x̂(l)k fill aM × N delay-Doppler grid (as
shown in the figure), where k = 0, . . . ,N−1 are the Doppler
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FIGURE 1. Block diagram of DD-OFDM modulation.

indices and l = 0, . . . ,M − 1 are the delay indices.2 First,
the frequency-Doppler symbols x̃(m)k are obtained by taking
a DFT along the delay axis of the delay-Doppler data grid
according to

x̃(m)k :=
1

√
M

M−1∑
l=0

x̂(l)k e
−j2π ml

M (4)

for m = 0, . . . ,M − 1 and l = 0,. . .,N − 1, where
m = 0,. . .,M − 1 are the frequency-frame indices. In this
representation, the subcarriers k = 0, . . . ,N − 1 in a
frequency-frame m can be interpreted as the Doppler axis (or
dimension), and the frequency-frames m = 0, . . . ,M − 1 as
the frequency-frame axis.

As shown in Fig. 2, we place these frequency-frame-
Doppler domain symbols on the MN micro-subcarriers, by
reading along the frequency-frames, sequentially. Hence, the
symbol x̃(m)k (obtained in (4)) is placed on subcarrier index
s(m)k defined as

s(m)k := mN + k (5)

Note that the micro-subcarriers {s(m)k }
N−1
k=0 form the mth

frequency-frame as shown in Fig. 2.

C. DD-OFDM SYMBOL
The transmitted DD-OFDM symbol (3) can be written in
terms of the subcarrier indices in (5), as

x(t) =
1

√
MNT

M−1∑
m=0

N−1∑
k=0

x̃(m)k ej2πs
(m)
k

1f
N t (6)

for t ∈ [−Tcp,NT ).
We will analyze the DD-OFDM waveform from the

perspective of data carrying DD basis functions. To present

2This 2D precoding approach is fundamentally different to standard DFT-
precoded OFDM which precodes the data in a single dimension.

the basis functions, we first define the function

FA(f ) :=
1
A

A−1∑
a=0

e−j2π
a
A f (7)

for f ∈ R and A ∈ N.
The DD-OFDM symbol in (6) can be expressed using basis

functions as follows:

x(t) :=

M−1∑
l=0

N−1∑
k=0

x̂(l)k ζ
(l)
k (t), (8)

where the basis function ζ
(l)
k (t) that modulates the delay-

Doppler data symbol x̂(l)k is

ζ
(l)
k (t) :=

1
√
NT

ej2πk
1f
N tFM

(
l −

t
T/M

)
(9)

for t ∈ [−Tcp,NT ), k = 0, . . . ,N −1 and l = 0, . . . ,M −1.
Theorem 1: The basis functions ζ

(l)
k (t) form an orthonor-

mal set, which satisfies∫ NT

0
ζ
(l)
k (t)ζ ∗(l′)

k ′ (t)dt =
1
M

δ[k − k ′]δ[l − l ′] (10)

for l, l ′ ∈ {0, . . . ,M − 1} and k, k ′
∈ {0, . . . ,N − 1}, where

δ[·] is the discrete delta function.
Proof: See Appendix A. □ In the following

section, we present a comparison of DD-OFDM with OTFS
in terms of the basis functions. We also compare the
peak-to-average power ratio (PAPR) and the implemenation
complexitites. We will show that the DD-OFDM scheme
has identical PAPR, with a slightly higher computational
complexity. Later, in Section V, we show that DD-OFDM
has lower OOB emission peaks compared to OTFS, and in
Sections VIII and IX, we show that DD-OFDM has better
channel estimation performance. In Section X, we show that
DD-OFDM has better symbol-error rate (SER) and spectral
efficiency performance, using numerical simulation.

IV. COMPARISON OF OTFS AND DD-OFDM
In this section, we compare OTFS and DD-OFDM in terms
of their basis functions and implementation complexity,
highlighting their differences.

The block diagram of OTFS modulation [2] is shown in
Fig. 3. By comparing with DD-OFDM in Fig. 1, it can
be noted that our DD-OFDM modulation uses a single
MN length subcarrier symbol vector and generates a long
OFDM symbol of duration NT , whereas OTFS generates N
successive OFDM symbols each of which has duration T .

A. BASIS FUNCTIONS
The basis functions φ

(l)
k (t) of OTFS with rectangular pulses

are given by

φ
(l)
k (t) :=

1
√
NT

ej2π
nk
N FM

(
l −

t
T/M

)
(11)

for t ∈ [nT , (n + 1)T ), n = 0, . . . ,N − 1, k = 0, . . . ,N −

1 and l = 0, . . . ,M − 1.
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FIGURE 2. Delay-Doppler precoding: Conversion from Delay-Doppler data symbols to micro-subcarrier symbols.

FIGURE 3. Block diagram of OTFS modulation.

By inspection of (9) and (11), we observe that both OTFS
and DD-OFDM basis functions have a structure where each
basis function is a product of a tone component (see Fig. 4(a))
and a pulse train (see Fig. 4(b)). The tone component for DD-
OFDM is the continuous sinusoid ej2π

k1f
N t whereas OTFS

has a piece-wise constant function as a tone which is equal
to

∑N−1
n=0 e

j2π kn
N I[nT ,(n+1)T )(t), where IS (t) is the indicator

function which equals 1 if t ∈ S and 0 otherwise. We note
that the tone component of OTFS is a zero order hold
approximation of the DD-OFDM tone. We illustrate this in
Fig. 4(a).3

Both DD-OFDM and OTFS have the same pulse train
component, FM (l − t

T/M ), as can be seen from (9) and (11).
This is further illustrated in Fig. 4(b) for t ∈ [0,NT ) and
N = 10.

3In Fig. 4 and Fig. 5, we have normalized the gains to be 1 by taking
1√
NT

= 1.

It can be seen from Fig. 4(c) that the difference in the tone
component leads to a notable difference in the basis functions
for OTFS and DD-OFDM. From Fig. 5, we can also see that
the difference between the basis functions does not vanish
with larger N . In this paper, we will show that DD-OFDM
has lower out-of-band emissions, simpler channel estimation
and superior Symbol Error Rate (SER) performance, due to
these different basis functions.

B. TIME-DELAY DOMAIN CONVERSION AND
IMPLEMENTATION COMPLEXITY
The way that DD-OFDM converts DD domain symbols to
Time-Delay (TD) domain symbols (i.e. transmitted samples)
is also different from the way OTFS does this. In OTFS, the
conversion is accomplished by taking an N point DFT along
the Doppler axis. In contrast, for DD-OFDM, the relation
between the DD and TD symbols is given as

x(l)n =
1

√
N

N−1∑
k=0

x̂(l)k e
−j2π k

N

(
n+ l

M

)
(12)

for n = 0, . . . ,N − 1 and l = 0, . . . ,M − 1, where we
obtain (12) from (8), (9) using the fact that x(l)n :=

√
Tx(nT+

l TM ) is the l th delay symbol of the n th time frame. It can be
noted that conversion to the TD domain in DD-OFDM can
be obtained directly by taking a DFT along Doppler axis k on
the phase shifted DD symbols x̂(l)k e

−j2π kl
MN .

We note that TD symbols
√
Tx(nT + l TM ) are also the time

samples after Parallel to Serial conversion in the DD-OFDM
block diagram in Fig. 1. This means that MN (log(N ) + 1)
operations are required to obtain the time domain samples
of DD-OFDM. Hence, the implementation complexity of
DD-OFDM is marginally more than OTFS which requires
MN log(N ) operations. However, we will show that the
precoding complexity of DD-OFDM allows for much better
channel estimation, and superior SER performance.

VOLUME 12, 2024 57883



S. Gopalam et al.: New Micro-Subcarrier OFDM-Based Waveform for DD Domain Communication

FIGURE 4. Comparison of OTFS and DD-OFDM basis functions.

C. PEAK TO AVERAGE POWER RATIO
The PAPR for DD-OFDM is the same as that of OTFS, since
the time domain symbols are obtained by a N point DFT of
the phase shifted data symbols as shown in (12).

FIGURE 5. Comparison of OTFS and DD-OFDM basis functions for a larger
value of N .

V. OUT OF BAND EMISSIONS
In this section, we show that DD-OFDM has lower out of
band (OOB) emissions compared to OTFS.

A. SPECTRA OF BASIS FUNCTIONS
We start with a comparison of the basis functions in the
frequency domain. We take a Fourier transform of the
basis functions of DD-OFDM and OTFS. Let Z (l)

k (f ) :=

1
√
NT

∫ NT
0 ζ

(l)
k (t)e−j2π ftdt denote the Fourier transform of

the DD-OFDM basis function ζ
(l)
k (t) and 8

(l)
k (f ) :=

1
√
NT

∫ NT
0 φ

(l)
k (t)e−j2π ftdt denote the Fourier transform of

OTFS basis function φ
(l)
k (t). The magnitude spectra are

|Z (l)
k (f )| =

1
M

∣∣∣∣M−1∑
m=0

e−j2π
m

(
l−MN

2

)
M

sinc
(

f
1f /N

− (mN + k)
) ∣∣∣∣ (13)
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|8
(l)
k (f )| =

∣∣∣∣FN (
f

1f /N
− k

)∣∣∣∣
1
M

∣∣∣∣∣
M−1∑
m=0

e−j2π
m(l−M

2 )
M sinc

(
f

1f
− m

)∣∣∣∣∣ (14)

where | · | represents the absolute value.
For DD-OFDM, we note from (13) that the spectrum of the

basis functions has the sinc function peaks at f = m1f +k 1f
N

for m = 0 to M − 1. The magnitudes at these frequencies
are 1

M . Outside the frequency range [0,M1f ], there are no
spectral peaks for the basis functions and the side-lobes decay
quickly as sinc(N f

1f ) for every basis function. See Fig. 6(a)
for an illustration.

For OTFS, we note from (14) that the basis functions
have spectral peaks approximately at the same frequencies as
for DD-OFDM. However, the peaks are not constant across
the band [0,M1f ], as can be seen in Fig. 6(b). Further,
the side-lobes of the OTFS basis functions do not decay
uniformly outside [0,M1f ]. For example, for k = N/2
(as in Fig. 6(b)) the OTFS basis functions have significant
side-lobes at m1f +

1f
2 for each m ≥ M (and m ≤ −1),

where the absolute gain is approximately sinc((m − M +

1) + 0.5). It is clear that these significant side-lobes decay
only as sinc(f /1f ), much slower compared to DD-OFDM.
In Fig. 6(b) the most significant side-lobe of OTFS can be
observed at −0.51f .
Wewill now show that this OTFS basis function behaviour,

leads to higher expected OOB emission peaks for the OTFS
waveform compared to DD-OFDM waveform.

B. EXPECTED OOB EMISSIONS
We define X (f ) :=

1
√
NT

∫ NT
0 x(t)e−j2π ftdt to be Fourier

transform of the DD-OFDM transmitted signal x(t). Recall
that x(t) =

∑N−1
k=0

∑M−1
l=0 x̂(l)k ζ

(l)
k (t).

Similarly, let Xotfs(f ) :=
1

√
NT

∫ NT
0 xotfs(t)e−j2π ftdt be the

Fourier transform of the OTFS transmitted signal xotfs(t) =∑N−1
k=0

∑M−1
l=0 x̂(l)k φ

(l)
k (t).

Our following theorem presents the expected power
spectral density of the two waveforms.
Theorem 2: Suppose that the data symbols x̂(l)k ’s are inde-

pendent and identically distributed (i.i.d) random variables,
satisfying E[|x̂(l)k |

2] = 1 and E[x̂(l)k ] = 0. The expected value
of the power spectral density of DD-OFDM signal is given by

E[|X (f )|2] =
1
M

M−1∑
m=0

N−1∑
k=0

sinc2
(

f
1f /N

− (mN + k)
)
(15)

whereas for the OTFS signal, it is given by

E[|Xotfs(f )|2] =
1
M

M−1∑
m=0

sinc2
(
f

1f
− m

)
(16)

Proof: See Appendix A. □

FIGURE 6. Power spectrum comparison for DD-OFDM and OTFS basis
functions.

From Theorem 2, it can be noted the expected power
spectral density of OTFS is equivalent to anOFDMwaveform
with M subcarriers with subcarrier spacing 1f . It can also
be noted that the expected power spectral density of DD-
OFDM is equivalent to an OFDM waveform with MN
subcarriers with subcarrier spacing 1f

N . Hence, the side lobes
of DD-OFDM signal decay approximately as N sinc2(N f

1f ),

whereas the OTFS signal side lobes decay as sinc2( f
1f ).

Hence, the OOB emission peaks for DD-OFDM is of the
order N times lower than that of OTFS.
Fig. 7 shows the power spectral density of both DD-

OFDM, and OTFS, for N = 50 and M = 250. As predicted,
OOB emission peaks of DD-OFDM are approximately 18 dB
smaller than OTFS.

VI. FREQUENCY DOMAIN CYCLIC REPLICATION
In this section, we propose a cyclic replication of a small
number of the micro subcarrier symbols for DD-OFDM,
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FIGURE 7. Comparison of OOB emission peaks.

which allows for a simpler baseband model that will be
presented in the next section.

Notice that the transmitted signal undergoes doubly
dispersive fading, as in (2), before reaching the receiver
and that the Doppler shifts are in the range [− νmax

2 , νmax
2 ].

To compensate for energy loss out of band due to Doppler,
and to simplify the receiver processing, we add cyclic
subcarriers in the frequency domain around the DD-OFDM
symbol.4

We add Ng additional micro-subcarriers on either side
of the MN DD-OFDM micro-subcarriers, and fill them in
a cyclic manner. On the lower frequency side, we add a
subframe of Ng micro-subcarriers, and similarly on the upper
frequency side, resulting inMN + 2Ng micro-subcarriers:

s(−1)
N−Ng . . . s(−1)

N−1 s(0)0 . . . s(0)N−1 . . .

. . . s(M−1)
0 . . . s(M−1)

N−1 s(M )
0 . . . s(M )

Ng−1 (17)

For the subcarrier symbols on the lower subframe (indexed
bym = −1), we copy the subcarrier symbols from frequency-
frame M − 1, i.e. x̃(−1)

N−k := x̃(M−1)
N−k , for k = 1, 2, . . . ,Ng.

Similarly, for the subcarrier symbols on the upper subframe
(indexed by m = M ), we copy the subcarrier symbols from
frequency-frame 0, i.e. x̃(M )

k := x̃(0)k , for k = 0, 1, . . . ,Ng−1.
This gives the following ordering of micro-subcarrier

symbols across theMN + 2Ng micro-subcarriers:

x̃(M−1)
N−Ng . . . x̃(M−1)

N−1 x̃(0)0 . . . x̃(0)N−1 . . .

. . . x̃(M−1)
0 . . . x̃(M−1)

N−1 x̃(0)0 . . . x̃(0)Ng−1 (18)

which clearly shows the cyclic replication. The value Ng is
chosen such that 2Ng

1f
N is greater than the Doppler spread

of the channel νmax. The block diagram for DD-OFDM
including the cyclic replication of micro-subcarrier symbols

4The idea of a frequency domain cyclic prefix was first proposed for
OFDM in [25] but it was for time dispersive channels. In contrast, our
waveform is for DD domain communication in doubly dispersive channels.
We also note that cyclic subcarriers are not strictly necessary for DD-OFDM
(see Appendix B).

FIGURE 8. DD-OFDM block diagram with frequency domain cyclic
replication of Ng micro subcarrier symbols on either side.

is shown in Fig. 8. As explained, the symbols in (18) form
the subcarrier symbol vector (shown in green color) of the
Micro-Subcarrier OFDM block.
Remark 1: Cyclic replication on both sides is used since

Doppler shifts can take either positive or negative values.
In contrast, cyclic repetition is used in the time domain to
deal with delay spread (as in standard OFDM) and then a
cyclic prefix suffices due to delays being non-negative.

A. IMPACT ON SPECTRAL EFFICIENCY
The spectral efficiency (transmitted symbols/sec/Hz) depends
on the following factors: the DD grid size (M ,N ), the
frequency cyclic replication length Ng, and the time domain
cylic prefix length Nd . The time-bandwidth product is given
by (

NT + Nd
T
M

) (
M1f + 2Ng

1f
N

)
= MN + 2Ng + Nd +

2NgNd
MN

(19)

The term 2NgNd
MN can be ignored, since it is smaller than 1 and

hence much smaller than MN + 2Ng + Nd . Therefore, the
spectral efficiency is

MN
MN + 2Ng + Nd

(20)

This expresssion includes the frequency domain cyclic
replication and time domain cyclic prefix.

Note that (20) can be expressed as(
1 +

1
M

2Ng
N

+
1
N
Nd
M

)−1

≈

(
1 +

νmax

M1f
+

τmax

NT

)−1
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Clearly the spectral efficiency is close to 1, when the
Doppler spread νmax is small in comparison to DD-OFDM’s
bandwidth M1f , and the delay spread τmax is small in
comparison to the symbol time NT .5

VII. DELAY-DOPPLER DOMAIN RECEIVER
In this section, we present the receiver for our DD-OFDM
waveform and derive the baseband I/O relation for DD-
OFDM in an integer Doppler channel. We then consider
the general case of non-integer fractional Doppler channels,
using the same receiver.

A. RECEIVER
For sake of convenience, let lp :=

τp
T/M and kp :=

νp
1f /N

denote the normalized delay and Doppler shift for each path
p = 0, . . . ,P − 1. We take lp to be an integer in the current
section. Later in Section IX, we will generalize to the case of
non-integer delays.

We employ a matched filtering receiver utilizing the
orthogonality of the DD-OFDM basis functions. The DD
received symbol ŷ(l

′)
k ′ is the matched filtering output of the

received waveform y(t) with the basis function ζ ∗(l′)
k ′ (t) as

given by

ŷ(l
′)

k ′ :=

∫ NT

0
y(t)ζ ∗(l′)

k ′ (t)dt (21)

=
1

√
M

M−1∑
m=0

ej2π
ml′
M ỹmN+k ′ (22)

for k ′
= 0, . . . ,N − 1 and l ′ = 0, . . . ,M − 1, where

ỹmN+k ′ :=
1

√
MNT

∫ NT

0
y(t)e−j2π(mN+k ′)1f

N tdt (23)

is received symbol for subcarrier mN + k ′.
From (22), we note that matched filtering with DD-

OFDM basis functions is equivalent to taking an IDFT along
the frequency-frame dimension m on the received OFDM
subcarrier symbols. Hence, we first focus on obtaining
the subcarrier symbols. The transmitted signal is x(t) =∑MN+Ng−1

s=−Ng x̃sej2πs
1f
N t with the cyclic symbols in (18).

Substituting x(t) in (2), the received signal y(t) is

y(t) =

P−1∑
p=0

MN+Ng−1∑
s=−Ng

hpe−j2π
s1f
N τpej2π (s+kp)

1f
N t x̃s. (24)

Hence, evaluating the Fourier transform in (23) of y(t) from
0 to NT , we obtain the received subcarrier symbols as

ỹmN+k ′ =

P−1∑
p=0

MN+Ng−1∑
s=−Ng

h′
pe

−j2π
slp
MN x̃sejπ (s−mN−k ′

+kp)

sinc
(
s− (mN + k ′

− kp)
)

(25)

5Note that in contrast, the spectral efficiency of standard OFDM is
≈

(
1 +

τmax
T

)−1, where τmax
T ≫

τmax
NT for large N . Hence, the wider

subcarrier OFDM is more susceptible to delay spread compared to DD-
OFDM, as mentioned in Section I.

for m = 0, . . . ,M − 1 and k ′
= 0, . . . ,N − 1, where,

h′
p :=

hp
M .

B. INTEGER DOPPLER CHANNEL
We denote ỹ(m)k ′ := ỹmN+k ′ using the frequency-frame-
Doppler representation. For an integer Doppler channel, i.e.
kp’s are integers, note that sinc(s − (mN + k ′

− kp)) =

δ[s − (mN + k ′
− kp)] in (25). Hence, the received micro-

subcarrier symbols are

ỹ(m)k ′ :=

P−1∑
p=0

h′
pe

−j2π (mN+k ′
−kp)

lp
MN x̃[m, k ′

− kp] (26)

where

x̃[m, k] :=


x̃(m)k if k ∈ [0,N − 1]

x̃(m−1)M
(k)N

if k < 0

x̃(m+1)M
(k)N

if k > N − 1

(27)

and where (m)M := m mod M , and (k)N := k mod N . The
modulo operation arises because of the cyclic structure of the
data sequence, as in (18).

Using (26) and (4), from (22), we obtain the DD domain
baseband I/O equation for the integer Doppler channel as

ŷ(l
′)

k ′ =

P−1∑
p=0

ĥ′
pe

−j2π
k′lp
MN

M−1∑
l=0

FM (lp − l ′ + l)x̂[l, k ′
− kp]

(28)

where ĥ′
p = h′

pe
j2π

kplp
MN and

x̂[l, k] :=


x̂(l)k if k ∈ [0,N − 1]

ej2π
l
M x̂(l)(k)N

if k < 0

e−j2π
l
M x̂(l)(k)N

if k > N − 1

(29)

Recall that x̂(l)k are the data symbols which were placed on the
delay-Doppler grid, and in (29) we see that some of them are
phase rotated.

Since lp’s are integers,FM
(
lp − l ′ + l

)
= δ[(lp−l ′+l)M ],

by the definition in (7). Hence, (28) can be written as

ŷ(l
′)

k ′ =

P−1∑
p=0

ĥ′
pe

−j2π
k′lp
MN x̂[(l ′ − lp)M , k ′

− kp] (30)

Note that the above twisted convolution equation has a

path delay dependent phase compensation term e−j2π
k′lp
MN in

contrast to OTFS where path Doppler shift dependent phase
compensation appears in the twisted convolution [6], [11], as

ŷ(l
′)

k ′ =

P−1∑
p=0

ĥ′
pe
j2π

l′kp
MN x̂

(l′−lp)M
(k ′−kp)N

(31)

for l ′ ≥ maxp lp. Recall that x̂
(l′−lp)M
(k ′−kp)N

are the delay-Doppler
data symbols and note that the OTFS phase compensation

term ej2π
l′kp
MN depends on path Doppler shifts. In an integer

Doppler channel, the path Doppler shifts can be obtained
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from the Doppler taps i.e. measurements on the integer
grid points. However, non-integer Doppler channels must be
considered due to the low Doppler resolution in practical
implementations. In non-integer Doppler channels, the path
Doppler shifts cannot be measured directly from the taps and
hence channel estimation for OTFS is a challenging problem
in non-integer Doppler channels.

In the next section, we will consider a general non-
integer Doppler channel and show that a similar baseband
I/O relationship holds for DD-OFDM, where the phase
compensation term depends only on the path delays. We will
also present a practical channel estimation scheme which
utilizes this structure of our DD-OFDM baseband model.

C. NON-INTEGER DOPPLER CHANNEL
For the non-integer Doppler case, there is more Doppler
spread in the baseband due to side-lobes of the sinc function.
We choose a sufficiently large number of cyclic micro-
subcarriers to deal with the spread of the sinc function,
as follows. Let ⌊x⌋ denote the largest integer that is smaller
than or equal to x. We suppose that Ng ≥ maxp⌊kp⌋ + S,
where S ∈ N is the value for which sinc(x) ≈ 0 for
|x| > S, e.g. |sinc(x)| ≤ 0.016 for |x| ≥ 20. Hence, we will
ignore the values of sinc function outside the range [−S, S]
in (25). This approximation leads to an ISI term which has
magnitude of the order 1

πS , which can be ignored. Note that
S < Ng < N , since N is large. Similar approximations were
used in [4] and [5] for non-integer fractional Doppler models
of OTFS.

We present our main result on DD-OFDM baseband
equations for practical non-integer Doppler channels in the
following Theorem 3.
Theorem 3: The DD-OFDM baseband equations for a

general non-integer Doppler channel are

ŷ(l
′)

k ′ =

P−1∑
p=0

Ng∑
i=−Ng

ĥp[i]e−j2π
k′lp
MN x̂[(l ′ − lp)M , k ′

− i] (32)

where ĥp[i] := h′
pe
jπ (kp−i)ej2π

ilp
MN sinc(kp − i) is the gain

corresponding to Doppler tap i of path p with delay tap lp.
Proof: See Appendix A. □
As can be seen from (32) in Theorem 3, the phase com-

pensation term for DD-OFDM in the non-integer Doppler
channel only depends on the path delays. Here, each path
p gives rise to multiple Doppler taps i = −Ng to Ng in
contrast to the integer Doppler channel, where each path
results in a single Doppler tap. In the non-integer channel,
the tap gains ĥp[i]’s have to be estimated in order to construct
the DD domain baseband channel matrix. However, for the
phase compensation term in the channel coefficient, only
path delays need to be estimated and not Doppler shifts. As
explained in the introduction, path delays are much easier to
estimate than path Doppler shifts due to the better resolution
that exists in the delay dimension of the DD grid. This is a
real, practical advantage of DD-OFDM over OTFS. In the

next section, we show how to estimate the tap gains in DD-
OFDM.

VIII. CHANNEL ESTIMATION FOR DD-OFDM
In this section, we describe a practical channel estimation
scheme for DD-OFDM. We consider the high-SNR regime
to highlight the effect of the unknown phase compensation
term and the number of considered taps. We apply the same
method to OTFS and compare the two schemes.

A. CHANNEL ESTIMATION SCHEME
Consider the pilot scheme in [5], (which considered OTFS
with rectangular pulses, but did not consider fractional
Doppler channels), where a pilot symbol is placed at location
(l1, k1) and surrounded by guard bands.

x̂(l)k =


1 if l = l1 and k = k1
0 if (l, k) ̸= (l1, k1), |l − l1| ≤ lmax,

and |k − k1| ≤ 2Ng

(33)

We suppose (l1, k1) is chosen such that lmax ≤ l1 and Ng ≤

k1 ≤ N − Ng − 1 so that l1 − lmax ≥ 0 and k1 ± Ng ∈

{0, . . . ,N − 1}. Ignoring noise, we obtain from (32) that

ŷ(l)k =

P−1∑
p=0

Ng∑
i=−Ng

ĥp[i]e−j2π
klp
MN x̂

(l−lp)
k−i (34)

for l ∈ {l1, . . . , l1 − lmax} and k ∈ {k1 − Ng, . . . , k1 + Ng}.
Note that by pilot design x̂

(l−lp)
k−i = 1 only if l − lp = l1 and

k+ i = k1, i.e. x̂
(l−lp)
k−i = δ[l− (l1 + lp)]δ[k− (k1 + i)]. Hence

from (34), we obtain the impulse response equation for DD-
OFDM as

ŷ(l)k =

P−1∑
p=0

Ng∑
i=−Ng

ĥp[i]e−j2π
klp
MN δ[l − (l1 + lp)]δ[k − (k1 + i)]

=

P−1∑
p=0

Ng∑
i=−Ng

ĥp[i]e−j2π
k(l−l1)
MN δ[l − (l1+lp)]δ[k−(k1+i)]

(35)

where (35) follows since lp is an integer.
The observed symbol ŷ

(l1+lp)
k1+i

at the grid location (l1 +

lp, k1 + i) has the value ĥp[i]e−j2π
(k1+i)lp
MN . Hence using (35),

ĥp[i]’s and lp’s can be obtained directly from theDDbaseband
channel impulse response.

The DD domain channel coefficient for each transmitted
and received symbol pair (x(l)k , y(l

′)
k ′ ) can be computed using

ĥp[i]’s and lp’s as seen from the DD base-band equation (32)
in Theorem 3. Hence, the presented practical channel
estimation scheme can be used to perfectly construct the full
DD baseband channel matrix.

This approach for DD-OFDM channel estimation is
practical since it directly utilizes the baseband impulse
response, and does not require additional knowledge such
as the number of individual paths, or additional processing
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to obtain path level information. We can simply treat each
delay-Doppler tap at delay index lp and the Doppler index
i, as an individual effective path with Doppler i1fN , delay
lp TM and gain ĥp[i]. No error is incurred by this approach as
can be seen from the DD-OFDM base-band relation in (32).
The accuracy of the constructed channel matrix depends only
on the number of considered Doppler taps, 2Ng + 1, where
Ng = S + maxp⌊kp⌋ is the number of guard symbols.
Note that this efficient channel estimation approach for

non-integer fractional Doppler channels can also be taken for
OTFS, however, it cannot achieve the same overall accuracy
as DD-OFDM (as will be shown in Section VIII-B). For
OTFS, a significant error is incurred during the channel
matrix construction, since the phase compensation term for
OTFS is computed using the integer Doppler tap values
instead of the path Doppler shift.

The baseband equations for OTFS are given by [6] as

ŷ(l
′)

k ′ =

P−1∑
p=0

h′
pe
j2π l′

M
kp
N

M−1∑
l=0

N−1∑
k=0

FM (lp − l ′ + l)

FN (k ′
− k − kp)x̂

(l)
k e

−j2π
k′−kp
N 1(l′<lp) (36)

=

P−1∑
p=0

h′
pe
j2π l′

M
kp
N

N−1∑
k=0

FN (k ′
− k − kp)x̂

(l′−lp)M
k

e−j2π
k′−kp
N 1(l′<lp) (37)

where 1(·) is the indicator function.
For comparison, we consider OTFS with full cyclic prefix

(OTFS-FCP) [11], where cyclic prefix symbols are used in
the delay-Doppler frame, which is equivalent to adding a
time-domain cyclic prefix at the beginning of each OTFS
frame. This is in contrast to OTFS with reduced cylic prefix
(OTFS-RCP), where only a single time-domain cyclic prefix
is added at beginning of the entire OTFS symbol. For FCP,
the data symbols d̂ (l)k for l = 0, . . . ,M − Mcp − 1 and
k = 0, . . . ,N−1, are placed on delay indices l+Mcp for each
Doppler index k (i.e. x̂(l)k = d̂

(l−Mcp)
k for l = Mcp, . . . ,M−1).

The rest of the delay indices l = 0 . . .Mcp−1 are cyclic prefix
symbols, i.e. x̂(l)k = d̂

(l−Mcp+M )
k . We denote the received

symbols r̂ (l
′)

k ′ := ŷ
(l′+Mcp)
k ′ for l ′ = 0, . . . ,M − Mcp − 1 and

k ′
= 0, . . . ,N − 1.
By considering S significant side-lobes of the FN (·)

function and using the cyclic prefix symbols, we obtain (38)
from (37). Further, approximating the path phase compensa-

tion term ej2π
l′kp
MN in (38) with the phase rotation ej2π

l′i
MN based

on the Doppler tap i, in (39), we obtain the Doppler tap model
for OTFS as

r̂ (l
′)

k ′ ≈

P−1∑
p=0

h′
pe
j2π l′

M
kp
N

⌊kp⌋+S∑
i=⌊kp⌋−S

FN (i− kp)d̂
(l′−lp)M−Mcp
(k ′−i)N

(38)

≈

P−1∑
p=0

⌊kp⌋+S∑
i=⌊kp⌋−S

h′
pe
j2π l′

M
i
N FN (i− kp)d̂

(l′−lp)M−Mcp
(k ′−i)N

=

P−1∑
p=0

Ng∑
i=−Ng

gp[i]ej2π
l′
M

i
N d̂

(l′−lp)M−Mcp
(k ′−i)N

(39)

where gp[i] := h′
pFN

(
i− kp

)
for i = ⌊kp⌋−S, . . . , ⌊kp⌋+S,

and recall that Ng = maxp⌊kp⌋ + S. Note that approximating

path phase rotation ej2π
l′kp
MN in (38) with the tap phase rotation

ej2π
l′i
MN in (39), results in a phase compensation error for

OTFS Doppler tap model.

B. COMPARISON OF CHANNEL ESTIMATION ERROR
In this subsection, we compare the accuracy of our channel
estimation scheme for DD-OFDM and OTFS treating each
tap in the impulse response as an individual path with the
corresponding observed gain.

Consider the vectorized input-output relations as y = Hx,
where y(l ′N + k ′) = ŷ(l

′)
k ′ , x(lN + k) = x̂(l)k and H is the

full channel matrix when all the Doppler taps are considered.
Let HNg be the channel coefficient when the Doppler taps
from −Ng to Ng are considered. HNg (l

′N + k ′, lN + k) can be
computed from (32), using the knowledge of channel impulse
response in (35) as explained in the previous section.

We define the normalized mean square error (NMSE) as

NMSE(Ng) :=
∥H − HNg∥

2

∥H∥2
(40)

where ∥ · ∥ represents the Frobenius norm of a matrix.
We compare the normalized mean square error (NMSE)

incurred by using the integer Doppler path approximation for
both OTFS and DD-OFDM.

Following [5] and [13], we consider the 3GPP EVA model
for the power delay profile [26], with delays rounded to
the nearest integer taps, and a Jakes model for the path
Doppler shifts. We consider a receiver speed of 200 kmph
and a carrier frequency of 4 GHz, and the parameter values
M = 500,N = 100 and 1f = 15 kHz for both
DD-OFDM and OTFS waveforms. Mcp = 19 for OTFS.
The presented NMSE values are averaged over 103 channel
realizations.

It can be seen from Fig. 9 that DD-OFDM channel
estimation is much more accurate in non-integer Doppler
channels. Hence, the proposed practical channel estimation
scheme which directly uses the channel impulse response
is sufficient for DD-OFDM, unlike OTFS where more
sophisticated methods with additional processing complexity
are required to achieve the same reconstruction accuracy.

IX. THE NON-INTEGER DELAY AND NON-INTEGER
DOPPLER CHANNEL
In this section we consider the general case of non-integer
fractional path delays, and show that our DD-OFDM scheme
maintains its advantages over OTFS in this general case.
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FIGURE 9. Channel estimation error in fractional non-integer Doppler
channel.

In doing so, we provide extra support and insight into how
high delay resolution (or equivalently wide signal bandwidth)
leads to an integer delay tap model for DD-OFDM.

A. DD-OFDM WITH NON-INTEGER FRACTIONAL PATH
DELAYS AND FRACTIONAL DOPPLER SHIFTS
For a non-integer fractional delay channel where lp’s are not
integers, we can write the DD-OFDM base band equations as

ŷ(l
′)

k ′ =

P−1∑
p=0

Ng∑
i=−Ng

ĥ′
p[i]e

−j2π k′
N

lp
M

M−1∑
l=0

FM (lp − l ′ + l)x̂[l, k ′
− i] (41)

By considering (only) the Sd significant side-lobes of the
FM (·) function, we can write

ŷ(l
′)

k ′ ≈

P−1∑
p=0

Sd∑
s=−Sd

Ng∑
i=−Ng

ĥ′
p[⌊lp⌋ + s, i]e−j2π

k′
N

lp
M

x̂[l ′ − ⌊lp⌋ − s, k ′
− i]

=

P−1∑
p=0

⌊lp⌋+Sd∑
q=⌊lp⌋−Sd

Ng∑
i=−Ng

ĥ′
p[q, i]e

−j2π k′
N

lp
M x̂[l ′ − q, k ′

− i]

(42)

where ĥ′
p[q, i] := ĥ′

p[i]FM (lp − q) for q = ⌊lp⌋ −

Sd , . . . , ⌊lp⌋ + Sd , and 0 otherwise.
Note that M is very large due to wide bandwidth, and

hence |q − ⌊lp⌋| = |s| ≤ Sd ≪ M for each q ∈

{⌊lp⌋ − Sd , . . . , ⌊lp⌋ + Sd }. Hence,
q−lp
M =

s
M +

⌊lp⌋−lp
M ≈

0, which means that all the paths p which contribute to a
delay tap q (i.e. |⌊lp⌋ − q| ≤ S) have nearly the same

phase compensation term, e−j2π
k′
N

lp
M ≈ e−j2π

k′
N

q
M . Hence,

FIGURE 10. Channel estimation error with fractional non-integer delay
and non-integer Doppler channel for UE speed v = 200 kmph.

FIGURE 11. Channel estimation error with fractional non-integer delay
and non-integer Doppler channel for UE speed v = 500 kmph.

by making the phase compensation approximation, we obtain
the equivalent integer delay tap model as

ŷ(l
′)

k ′ ≈

P−1∑
p=0

Ng∑
i=−Ng

Nd∑
q=−Nd

ĥ′
p[q, i]e

−j2π k′q
MN x̂[l ′ − q, k ′

− i]

=

Ng∑
i=−Ng

Nd∑
q=−Nd

ĥ[q, i]e−j2π
k′q
MN x̂[l ′ − q, k ′

− i] (43)

where ĥ[q, i] :=
∑P−1

p=0 ĥ
′
p[q, i], and Nd = Sd + maxp⌊lp⌋.

Hence for large values of M , a non-integer delay channel
for the DD-OFDMbaseband channel is closely approximated
by an integer delay channel with more effective paths. The
error in the phase compensation vanishes by increasing the
value of M or equivalently bandwidth. These effective paths
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are all that can be measured, in practice, at the system sample
rate, since it is only possible to measure the energy in each bin
(tap), giving an effective integer-delay channel model with a
larger number of paths.

B. CHANNEL ESTIMATION ERROR
To compare the channel estimation error, we consider
numerical simulation for the 3GPP EVA model [26] with
same parameters as in section VIII-B. However, the path
delays are now real valued numbers, and not rounded to
integers. We choose the number of significant delay taps per
path (i.e. the number of effective paths), to be Sd = 20.
In Fig. 10, we present the channel estimation error of our

channel estimation scheme, for DD-OFDM and OTFS, for a
channel with both fractional delay and fractional Doppler, for
a UE speed of v = 200 kmph, or equivalently a maximum
Doppler spread of 0.74 kHz. As can be seen, DD-OFDM
outperforms OTFS, as it did in the integer delay case in Fig. 9.
The difference in performance compared to the integer-delay
case is because the energy from each path is now spread over
multiple bins in the DD grid, which means the channel is less
sparse, reducing the performance of the channel estimator.

In Fig. 11, we present the channel estimation results for
a higher UE speed of v = 500 kmph, or equivalently a
maximum Doppler spread of 1.85 kHz. As can be seen,
OTFS-FCP channel estimation has a slightly higher error
floor at this higher speed, while the DD-OFDM estimation
performance has not changed significantly, even though the
Doppler has more than doubled.

X. SYMBOL ERROR RATE AND SPECTRAL EFFICIENCY
In this section, we compare the Symbol Error Rate (SER)
and spectral efficiency performance of OTFS and DD-OFDM
using numerical simulations.

The path delays and gains of the channel are realized
according to the power delay profile specified in the Extended
Vehicular A (EVA) model [26]. See Table 1. For each
path p, the Doppler shift νp = fc vc cos(θp) is realized
according to Jakes formula, where θp is uniformly randomly
chosen between −π and π . Here, v is the speed of the
UE, fc = 4 GHz is the carrier frequency and c is the
speed of light. We consider two UE speeds v of 200 kmph
and 500 kmph, which correspond to a maximum Doppler
shift of 0.74 kHz and 1.85 kHz respectively. We note the
considered channel model is a general non-integer delay and
non-integer Doppler model. We consider 4 QAM alphabet
for the data symbols. The rest of the parameters are given in
Table 2.
We consider three schemes, namely DD-OFDM, OTFS

with reduced cylic prefix (OTFS-RCP) and OTFS-FCP. For
DD-OFDM, the number of cyclic micro-subcarriers (i.e. 2Ng)
is taken to be 18 for 200 kmph and 26 for 500 kmph for DD-
OFDM. The cyclic prefix symbols for OTFS and DD-OFDM
are Nd ,Mcp = 16.

We adopt the Message Passing (MP) algorithm of [5] to
perform equalization/detection. The delay-Doppler channel

FIGURE 12. SER comparison of OTFS and DD-OFDM for v = 200 kmph
and v = 500 kmph.

TABLE 1. Power delay profile for extended vehicular a model.

tap measurements are obtained by a pilot at (l, k) =

(M/2,N/2) for each scheme. For the MP algorithm, only
the taps that are not smaller than 30 dB of the strongest tap
are considered for equalization in order to exploit sparsity.
The presented results are obtained by averaging over 5 ×

103 channel realizations.
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TABLE 2. Simulation parameters.

TABLE 3. Spectral efficiencies.

A. SER COMPARISON
Fig. 12 presents the curves for SER vs Signal-to-Noise Ratio
(SNR) per symbol, Es

N0
. Observe that at both UE speeds

DD-OFDM has the lowest SER of the three schemes. The
error floor occurs due to the error made from estimating the
effective channel matrix from the measured channel taps.
As shown in Fig. 10, DD-OFDM has a smaller channel
estimation error, which has translated into a superior SER
performance over OTFS.

It can also be noted that the SERs of all schemes are lower
at the higher UE speed (500 kmph, compared to 200 kmph),
which is due to the better separation of paths in the DD
domain at higher UE speed.

B. SPECTRAL EFFICIENCY COMPARISON
The spectral efficiencies of the four schemes are given in
Table 3, calculated as the ratio of number of data symbols and
the time bandwidth product of each waveform (accounting
for the cyclic prefix, subcarrier cyclic symbols and bandwidth
expansion).

Note that even though OTFS-RCP has a slightly higher
spectral efficiency than DD-OFDM, we have seen in
Section X-A that it clearly has a significantly worse SER
performance.

XI. CONCLUSION
We have presented a new DD modulation scheme, DD-
OFDM, by taking an alternate view of ICI and coherence time
for an OFDM system in doubly dispersive channels. We have
developed DD-OFDM modulation using an OFDM system
with micro-subcarriers and DD domain precoding. We have
shown that DD-OFDM offers several advantages over OTFS
in terms of lower out-of-band emissions, lower SER and
better spectral efficiency while having the same sparse
channel benefits, PAPR, and comparable implementation
complexity.

We have derived the I/O twisted convolution relationship
for DD-OFDM, where the phase compensation term only
depends on the path delays. As a result, we have proposed a
simple channel estimation scheme for DD-OFDM and OTFS
in non-integer fractional Doppler channels, and shown that
the DD-OFDM performance is superior.

APPENDIX A
PROOFS
Proof of Theorem 1:∫ NT

0
ζ
(l)
k (t)ζ ∗(l′)

k ′ (t)dt

=
1

M2NT

∫ NT

0
ej2π(k−k ′)1f

N t
M−1∑
m=0

e
−j2πm

(
l
M −1ft

)

M−1∑
m′=0

e
j2πm′

(
l′
M −1ft

)
dt (44)

=
1
M2

M−1∑
m=0

M−1∑
m′=0

ej2π
m′l′−ml

M e−jπ (mN+k−m′N−k ′)

sinc
(
mN + k − m′N − k ′

)
(45)

=
1
M2

M−1∑
m=0

e−j2π
m(l−l′)
M δ[k − k ′] (46)

where (46) is due to the fact that sinc(·) is zero for all integers
except 0. From (7), the definition ofFM (·), we obtain that (46)
is equivalent to

∫ NT
0 ζ

(l)
k (t)ζ ∗(l′)

k ′ (t)dt =
1
M δ[k − k ′]FM (l −

l ′). Since FM (0) = 1, and FM (m) = 0 for all integers
m ̸= 0 in the range {−M − 1, . . . ,M − 1}, we obtain∫ NT
0 ζ

(l)
k (t)ζ ∗(l′)

k ′ (t)dt =
1
M δ[k − k ′]δ[l − l ′]. □

Proof of Theorem 2: From (6), theDD-OFDMwaveform
x(t) can be expressed as

x(t) =
1

√
MNT

M−1∑
m=0

N−1∑
k=0

x̃(m)k ej2π (mN+k)1f
N tI(0,NT ]. (47)

Hence, X (f ) can be obtained as

X (f ) =
1

√
M

M−1∑
m=0

N−1∑
k=0

x̃(m)k sinc
(

f
1f /N

− (mN + k)
)

e
−jπ

(
f

1f /N −(mN+k)
)
. (48)

Note that E[x̃(m)k x̃∗(m′)
k ′ ] = δ[m − m′]δ[k − k ′] since x̃(m)k ’s

are obtained by taking a DFT of x̂(l)k along l, where x̂(l)k are
i.i.d such that E[x̂(l)k ] = 0, and E[|x̂(l)k |

2] = E[x̂(l)k x̂
∗(l)
k ] = 1.

Hence, we obtain the expected power spectral density for DD-
OFDM transmitted signal as

E[|X (f )|2] =
1
M

M−1∑
m=0

N−1∑
k=0

sinc2
(

f
1f /N

− (mN + k)
)
(49)

For OTFS, note that the transmitted signal can be expressed
using time-frequency symbols X (m)

n :=
∑M−1

l=0
∑N−1

k=0 x̂
(l)
k

e
j2π

(
ml−nk
MN

)
as

xotfs(t) =
1

√
MNT

M−1∑
m=0

N−1∑
n=0

X (m)
n ej2πm1ftI[nT ,(n+1)T ) (50)
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Hence, the Fourier transform X (f ) can be obtained as

Xotfs(f ) =
1

√
M

M−1∑
m=0

1
N

N−1∑
n=0

X (m)
n sinc

(
f

1f
− m

)
e
−jπ (2n+1)

(
f

1f −m
)

(51)

Note that E[X (m)
n X∗(m′)

n′ ] = δ[m−m′]δ[n−n′] as before, since
X (m)
n ’s are obtained by taking a DFT of x̂(l)k along k and an

IDFT along l. Hence, we obtain the expected power spectral
density for OTFS transmitted signal as

E[|Xotfs(f )|2] =
1
M

M−1∑
m=0

1
N

N−1∑
n=0

sinc2
(
f

1f
− m

)
(52)

=
1
M

M−1∑
m=0

sinc2
(
f

1f
− m

)
(53)

□
Proof of Theorem 3: Consider (25). As mentioned,

we are only interested in the values of s for which the sinc
function value is significant, i.e. s such that |s − mN + k ′

−

⌊kp⌋| ≤ S. Note that |s − mN + k ′
− ⌊kp⌋| ≤ S only if

s ≥ mN + (k ′
−⌊kp⌋−S) and s ≤ mN +k ′

−⌊kp⌋+S, which
is true only if s ∈ {mN + (k ′

− Ng), . . . ,mN + (k ′
+ Ng)},

since Ng = S + maxp⌊kp⌋. Hence, we can write (25) as

ỹmN+k ′ :=

P−1∑
p=0

mN+k ′
+Ng∑

s=mN+k ′−Ng

h′
pe

−j2πs1f
N τp x̃s

ejπ (s−mN−k ′
+kp)sinc

(
s− (mN + k ′

− kp)
)

(54)

Following similarly as in the integer case, we obtain

ỹ(m)k ′ :=

P−1∑
p=0

Ng∑
i=−Ng

h′
pe

−j2π (mN+k ′
−i)

lp
MN ejπ (kp−i)

sinc(kp − i)x̃[m, k ′
− i] (55)

As before, we use (22) and (4) to obtain the DD domain
baseband equations as

ŷ(l
′)

k ′ =

P−1∑
p=0

Ng∑
i=−Ng

ĥp[i]e−j2π
k′lp
MN FM

(
lp − l ′ + l

)
x̂[l, k ′

− i]

=

P−1∑
p=0

Ng∑
i=−Ng

ĥp[i]e−j2π
k′lp
MN x̂[(l ′ − lp)M , k ′

− i] (56)

where ĥp[i] := h′
pe
jπ (kp−i)ej2π

ilp
MN sinc(kp − i).

□

APPENDIX B
ON THE USE OF CYCLIC SYMBOLS IN SUBCARRIER
DOMAIN
As mentioned previously in footnote 4 of Section VII, it is
not essential to fill additional micro-subcarriers on either

side of the bandwidth with cyclic symbols. If those micro-
subcarriers are left unused, it is analogous to using zeros in
the time-domain prefix of traditional OFDM, as is sometimes
employed in practice. In this case, all the DD-OFDM
baseband equations (i.e. (30), Theorem 3 and (41)-(43)) in
the paper still hold, provided the definition of x̃[m, k] in (28)
is modified to be

x̃[m, k] :=


x̃(m)k if k ∈ [0,N − 1], m ∈ [0,M − 1]

x̃(m−1)
(k)N

if k < 0 & m > 0

x̃(m+1)
(k)N

if k > N − 1 & m < M − 1

0 o.w.

(57)

and as a result, x̂[l, k] from (29) is replaced by:

x̂[l, k] :=


x̂(l)k if k ∈ [0,N − 1](
1 −

1
N

)
ej2π

l
M x̂(l)(k)N

if k < 0(
1 −

1
N

)
e−j2π

l
M x̂(l)(k)N

if k > N − 1

(58)
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